I Wayan Budiastra
Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian IPB

Published : 22 Documents
Articles

Found 22 Documents
Search

KAJIAN REKAYASA PROSES PENGGORENGAN HAMPA DAN KELAYAKAN USAHA PRODUKSI KERIPIK PISANG Wijayanti, Ruri; Budiastra, I Wayan; Hasbullah, Rokhani
Jurnal Keteknikan Pertanian Vol. 25 No. 2 (2011): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (519.708 KB)

Abstract

Abstract Vacuum frying is a new technology that can be used to improve quality attributes of fried food because of low temperatures process. The objectives of this study is to assess the effects of oil temperatures and exposure time of frying on physic-chemical and organoleptic properties of banana chips to get a better guality products, to determine packaging material that can extend shelf life of banana chips, to predict shelf life of banana chips using the method of acceleration and to calculate production costs and the business feasibility of vacuum fried banana chips. The quality parameters tested include water content, fat content, colour, thickness and organoleptic test. Banana chips were fried in oils with temperature of 60, 70, 80, and 90°C and time of frying 30, 45, 60 and 75 minutes. The result showed that the temperature and frying time is significantly influence the quality and characteristics of the products. The best quality of banana chips obtained at frying temperature of 80°C for 60 minutes. Aluminum foil can maintain the shelf life of banana chips for 115 days of storage, while the PP is only for 70.6 days of storage based on water content parameter. Banana chips business eligible to run if production capacity is 4 kg or more. Keywords: banana, vacuum fryer, self life, the feasibility Abstrak Penggorengan vakum adalah sebuah teknologi baru yang dapat digunakan untuk meningkatkan kualitas makanan gorengan (keripik) dengan proses suhu rendah. Tujuan dari penelitian ini adalah untuk mengkaji pengaruh suhu minyak dan waktu penggorengan terhadap sifat fisiko-kimia dan organoleptik keripik pisang sehingga didapatkan produk dengan kualitas terbaik, menentukan jenis kemasan yang dapat memperpanjang umur simpan keripik pisang, untuk menduga umur simpan keripik pisang dengan menggunakan metode akselerasi dan menghitung biaya produksi dan kelayakan usaha keripik pisang dengan penggorengan vakum. Parameter kualitas yang diuji meliputi kadar air, kadar lemak, warna, ketebalan dan uji organoleptik. Keripik pisang digoreng dalam minyak dengan suhu 60, 70 80, dan 90 ° C dan waktu penggorengan 30, 45, 60 dan 75 menit. Hasil penelitian menunjukkan bahwa suhu dan waktu penggorengan secara signifikan mempengaruhi kualitas dan karakteristik produk. Kualitas terbaik dari keripik pisang diperoleh pada suhu penggorengan 80 ? C selama 60 menit. Aluminium foil dapat mempertahankan umur simpan keripik pisang selama 115 hari penyimpanan, sedangkan PP hanya 70,6 hari penyimpanan berdasarkan parameter kadar air. Bisnis keripik pisang  memenuhi syarat untuk dijalankan jika kapasitas produksinya 4 kg atau lebih. Kata Kunci: Pisang, penggorengan vakum, umur simpan, kelayakan usahaDiterima: 27 Mei 2011 ; Disetujui: 16 September 2011
PENENTUAN POLA PENINGKATAN KEKERASAN KULIT BUAH MANGGIS SELAMA PENYIMPANAN DINGIN DENGAN METODE NIR SPECTROSCOPY Novita, Dwi Dian; Ahmad, Usman; ., Sutrisno; Budiastra, I Wayan
Jurnal Keteknikan Pertanian Vol. 25 No. 1 (2011): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (800.917 KB)

Abstract

Abstract Pericarp hardening of mangosteen fruit has correlation with the decrease in moisture content due to transpiration and respiration during storage.  The change of pericarp moisture content during storage may be determined nondestructively using near infrared (NIR) spectroscopy. The objectives of this study were to build calibration model of NIR reflectance to predict the moisture content of the pericarp, and to determine the pattern of pericarp hardening based on change of moisture content during storage using NIR reflectance. NIR reflectance spectra were obtained from fruits stored at 8ºC, 13ºC, and room temperature.  Calibrations were built using partial least squares (PLS) and artificial neural network (ANN) models.  Results of analysis indicated that pericarp moisture content could be predicted well by NIR reflectance using the calibration model of PLS for mangosteen stored at 8ºC, 13ºC, and room temperature. The pattern of pericarp hardening based on change of moisture content also could be determined using NIR reflectance for mangosteen stored at 13ºC and room temperature. Keywords : mangosteen fruit, pericarp hardening, moisture content NIR spectroscopy, PLS, ANN Abstrak Pengerasan kulit buah manggis memiliki korelasi dengan penurunan kadar air kulit buah akibat dari proses transpirasi dan respirasi buah selama penyimpanan. Perubahan kadar air kulit buah selama penyimpanan bisa ditentukan secara non-destutive dengan menggunakan near infrared (NIR) spectroscopy. Tujuan penelitian ini adalah menyusun model kalibrasi reflektan NIR untuk memprediksi kadar air kulit buah manggis, serta untuk menentukan model pengerasan kulit buah berdasarkan perubahan kadar air selama penyimpanan menggunakan reflektan NIR. Spektra reflektan NIR diambil dari buah manggis yang disimpan pada suhu 8oC, 13oC dan suhu ruang. Kalibrasi dibangun dengan menggunakan model partial least squares (PLS) dan artificial neural network (ANN). Hasil analisis mengindikasikan bahwa kadar air kulit buah dapat diprediksi secara baik dengan reflektan NIR menggunakan model kalibrasi PLS untuk buah manggis yang disimpan pada suhu 8oC, 13oC dan suhu ruang. Model pengerasan kulit buah berdasarkan perubahan kadar airnya juga dapat ditentukan dengan reflektan NIR untuk buah manggis yang disimpan pada suhu 13oC dan suhu ruang. Kata kunci : buah manggis, pengerasan kulit, NIR spectroscopy, PLS, ANNDiterima: 19 Oktober 2010; Disetujui: 10 Maret 2011  
KARAKTERISTIK TRANSMISI GELOMBANG ULTRASONIK DAN HUBUNGANNYA DENGAN SIFAT FISIKO-KIMIA BUAH NAGA Djamila, Siti; Budiastra, I Wayan; ., Sutrisno
Jurnal Keteknikan Pertanian Vol. 24 No. 1 (2010): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstractCommonly the quality of dragon fruit in Indonesia is determined manually by using visual appearances and it gives un-uniformly results caused by human factors and the judgement is not reflected the internal quality of dragon fruit. Destructive method is usually used to determine the internal quality of dragon fruit that is unsuitable for quality control of fresh dragon fruit.  So a non destructive method is required for evaluation the quality of dragon fruit. The objectives of the research were to determine the physico-chemical and ultrasound wave transmission characteristics of super red dragon fruit according to harvesting time, and to study the relationship between ultrasound wave transmission characteristics and physico-chemical characteristics of super red dragon fruit. Super-red dragon fruits were harvested at 30, 32, and 34 days after flower blooms (150 samples) from PT Wahana Cory, Ciapus, Bogor. The results showed that the ultrasound velocity of super red dragon fruit ranged from 614.10 to 680.16  m/s and  the attenuation coefficient were 57.32 to 62.40 Neper per meter. The attenuation coefficient was significantly different according to maturity.  There were significant correlations between ultrasound parameters (velocity and attenuation coefficient) and physico-chemical of super red dragon fruit (firmness, sugar content, total soluble solid, and total acid).Keyword: dragon fruit, attenuation, ultrasound, velocity Diterima: 25 September 2009; Disetujui: 3 Februari 2010 
MODEL PENDUGAAN KANDUNGAN AIR, LEMAK DAN ASAM LEMAK BEBAS PADA TIGA PROVENAN BIJI JARAK PAGAR (Jatropha curcas L.) MENGGUNAKAN SPEKTROSKOPI INFRAMERAH DEKAT DENGAN METODE PARTIAL LEAST SQUARE (PLS) LENGKEY, LADY C. E. CH.; BUDIASTRA, I WAYAN; SEMINAR, KUDANG B.; PURWOKO, BAMBANG S.
853-8212
Publisher : Pusat Penelitian dan Pengembangan Perkebunan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAKJarak pagar berpotensi sebagai sumber biodiesel karena kandunganlemak yang tinggi (>40%) dan belum ada penggunaan lainnya.Spektroskopi (Near Infrared) NIR adalah metode yang cepat untukmengukur spektrum sampel dan tidak terdapat limbah kimia. Tujuanpenelitian adalah mengembangkan metode pendugaan komposisi kimiabeberapa  provenan  jarak  pagar  berdasarkan  spektroskopi  NIRmenggunakan kalibrasi PLS. Pengujian dilakukan menggunakan tigaprovenan jarak pagar yaitu IP-3A, IP-3M, dan IP-3P masing-masing 85sampel. Spektrum reflektansi diukur menggunakan alat NIRFlex SolidsPetri pada panjang gelombang 1000–2500 nm. Sekitar ⅔ jumlah sampeldigunakan untuk mengembangkan persamaan kalibrasi dan ⅓ jumlahsampel untuk validasi. Pra perlakuan data spektrum dilakukan dengannormalisasi antara 0-1, turunan pertama Savitzky-Golay 9 titik dangabungan keduanya. Hasil penelitian menunjukkan spektroskopi NIRdapat menduga kadar air, lemak, dan asam lemak bebas . Koefisienkorelasi (r) antara komponen kimia metode acuan dengan dugaan NIR>0,83 menunjukkan ketepatan model cukup baik (r kadar air=0,96, r kadarlemak=0,92, dan r ALB=0,89 ). Konsistensi model kalibrasi kadarair=94,85%, lemak=82,56%, dan ALB=87,80%. Koefisien keragamandugaan (Prediction Coeficient Variability/PCV) ketiga model <10%menunjukkan model yang dibangun cukup handal. Ratio of standard errorprediction to deviation (RPD) menunjukkan metode spektroskopi NIRdapat digunakan untuk menentukan kadar air (RPD=3,30) dan lemak(RPD=2,06). Model-model yang dikembangkan secara umum layakuntuk menentukan kadar air dan lemak biji jarak pagar, tetapi belumoptimal untuk penentuan kadar ALB biji jarak pagar.Kata kunci: NIR , jarak pagar, kadar air, kadar lemak, kadar asam lemakbebasABSTRACTPhysic nut is a potential source of biodiesel. It is high in fat content,above 40% and has not been usesed for other purposes. Moisture, free fattyacid, and fat content are the chemical compounds and determinant factorfor physic nut seed quality. The objective of this study was to develop amethod to predict chemical composition of physic nut by NIRspectroscopy and PLS calibration. The study was conducted using threeprovenances of physic nut, i.e. IP-3A, IP-3M, and IP-3P, with 85 sampleseach. The wavelengths of near infrared reflectance ranged from 1000 to2500 nm, and measured by NIR Flex Solids Petri Apparatus.Approximately ⅔ of total samples were used for developing calibrationequation, while ⅓ of total samples for performing validation. Pre-treatmentof spectrum data was done by applying normalization, first derivative ofSavitzky–Golay 9 points, and as well as their combination. The resultsshowed that NIR spectroscopy performed acceptable prediction formoisture and fat content. Correlation coefficients (r) between the referencemethod and NIR prediction were 0.96 for moisture content, 0.92 for fatcontent, and 0.89 for FFA and the consistency of the model were 94.85%for moisture content, 82.56% for fat, and 87.80% for FFA. Prediction ofcoefficient of variability (PCV) of the three models ≤10 % shows that themodels are reliable. Ratio of standard error prediction to deviation (RPD)for moisture content has the potential to be used for screening (RPD=3.30)though the fat content model has rough screening (RPD=2.06).Key words: NIR, physic nut, moisture, fat, free fatty acid contents.
EFEKTIVITAS METODE NONDESTRUKTIF NIR-JARINGAN SARAF TIRUAN DALAM MENENTUKAN KOMPOSISI KIMIA JAGUNG Andrianyta, Harmi; Budiastra, I Wayan
Widyariset Vol 13, No 2 (2010): Widyariset
Publisher : LIPI-Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (490.726 KB)

Abstract

High maize production should be followed by good handling and preservation up to consumer. Near Infrared Reflectance (NIR) was nondestructive testing method, as well as high accuracy, free from pollution, and rapid method, therefore suggested as a testing method. The objective of this study was asses of NIR technology efectivity in determining four major compositions of maize. Fifty samples of maize (intact seeds) were scanned from 900-2000 nm NIR wavelength, interval 5 nm. Calibration model for NIR measurement using Artificial Neural Network (ANN) technique three layers. As input layer ANN are 5, 10, and 15 nodes principal component (PC), hidden layer 4,6, 8, 10, and 12 nodes and output layer are single chemical composition and simultaneously. Prediction of an external validation set showed low the SEP (standard error of prediction) and CV (coeficient of variability). As result, NIR technology is able to predict maize chemical composition accurately SEP ranged from 0.004-0.496, CVranged from 0.047–0.518. ANN with 5 nodes input layer and single output layer were very strong recommended to generate NIR calibration model.
PREDIKSI KANDUNGAN KIMIA MANGGA ARUMANIS SELAMA PENYIMPANAN DENGAN SPEKTROSKOPI NIR Agustina, Sri; Purwanto, Y. Aris; Budiastra, I Wayan
Jurnal Keteknikan Pertanian Vol. 3 No. 1 (2015): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (921.763 KB)

Abstract

AbstractThe various internal qualities attributes of fruits and vegetables were able to be predicted nondestructively by using near infrared spectroscopy techniques. The objective of this study was to develop a calibration model for prediction of starch content, soluble solids content and water content of mango fruit by using near infrared spectroscopy and chemometric. The reflectance spectra of mango fruit were obtained in the wavelength range from 1000 nm to 2500 nm. The effects of different pre-process methodsand spectra treatments, such as smoothing 3 points (sa3), first derivative Savitzky-golay 9 points (dg1), and combination of smoothing 3 points (sa3) and first derivative Savitzky-golay 9 points (dg1) were analyzed.The prediction models were developed by partial least square regression (PLS). The results show that the correlation coefficient, standard error calibration and consistency for starch content of 0.95, 1.20% and 86.89% were achieved using pre-process of first derivatif Savitzky-golay 9 points; for soluble solid content of 0.90, 1.34oBrix and 86.24% were achieved using combination of smoothing 3 points and first derivatif Savitzky-golay 9 point and for water content of 0.78, 0.850 % and 99.74% were achieved using smoothing 3 points. This showed the capability of near infrared spectroscopy and the important role of chemometric in developing accurate models for the prediction of internal quality characteristics of mango fruit.Keywords: near infrared spectroscopy, internal quality, chemometric, mango, non destructiveAbstrakKualitas internal dari produk buah dan sayuran mampu dievaluasi dengan baik secara non destruktif menggunakan metode spektroskopi near infrared. Tujuan dari penelitian ini adalah untuk mengembangkan model kalibrasi untuk memprediksi kandungan pati, total padatan terlarut dan kadar air buah mangga selama penyimpanan menggunakan spektroskopi near infrared dan kemometrik. Spektra reflektan buah mangga diukur pada panjang gelombang 1000 nm sampai 2500 nm. Pengaruh metode pra-proses data yaitu penghalusan 3 titik, turunan pertama Savitzky-golay 9 titik, serta kombinasi penghalusan 3 titik dengan turunan pertama Savitzky-golay 9 titik terhadap ketelitian model kalibrasi juga dianalisis. Model prediksi dikembangkan dengan menggunakan regresi partial least square (PLS). Model prediksi dengan spektroskopi near infrared yang dikembangkan menghasilkan koefisien korelasi, standard error calibration(SEC) dan konsistensi untuk kandungan pati adalah 0.95, 1.20%, dan 86.89% yang diperoleh dari data praproses turunan pertama Savitzky-golay 9 titik, untuk total padatan terlarut, yaitu 0.90, 1.34oBrix, dan 86.24% yang diperoleh dengan menggunakan kombinasi antara penghalusan 3 titik dan turunan pertama Savitzkygolay 9 titik, sedangkan untuk kadar air yaitu 0.78, 0.850%, dan 99.74% diperoleh dengan menggunakan penghalusan 3 titik. Dapat disimpulkan bahwa model prediksi spektroskopi near infrared untuk menduga kandungan internal dari buah mangga arumanis telah dikembangkan dengan baik.Kata kunci: spektroskopi near infrared, kualitas internal, kemometrik, mangga, non destruktifDiterima: 10 Desember 2014; Disetujui: 09 Maret 2015
ANALISIS PERUBAHAN KUALITAS PASCAPANEN PEPAYA VARIETAS IPB9 PADA UMUR PETIK YANG BERBEDA Arifiya, Nur; Purwanto, Y. Aris; Budiastra, I Wayan
Jurnal Keteknikan Pertanian Vol. 3 No. 1 (2015): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (578.551 KB)

Abstract

AbstractPapaya is generally harvested at condition of hard green mature. The maturity level depends on the market destination. Understanding the maturity level and its postharvest quality changes of papaya during storage is important in order to determine the market destination. The objective of this study was to investigate the effect of different picking date on the postharvest quality and shelf life of papaya cv. IPB9 during storage period. Sample of papaya fruits were harvested at 135, 131, 128, 121 and 114 days after anthesis. After harvesting, papaya fruits were ripened artificially by injecting 50ppm of ethylene during 24 hand then were placed in the room temperature. The results showed that picking date of 128 has the highest starch content. After ripening, this papaya fruit has soluble solid content (SSC) of 6.7oBrix. For those papaya fruits with picking date of 135 and 131 have SSC of 8.3oBrix dan 7.5oBrix at four days storage.Papaya fruit with picking days of 128 has the longest shelf life until six days. The shortest shelf life was papaya fruits with picking date of 131 and 135 until four days. These picking date of 114 and 121 showed the lowest SSC. It could be concluded that for papaya fruit cv IPB9, the picking date of 128 was the most suitable for long distance market.Keywords : picking date, papaya cv. IPB9, starch content, storage, shelf lifeAbstrakPepaya biasanya dipanen pada kondisi masih hijau tetapi sudah tua. Tingkat ketuaan pepaya yang dipanen tergantung dari tujuan pasar. Pengetahuan tentang tingkat ketuaan panen pepaya dan pengaruhnyaterhadap perubahan kualitas pasca panen selama penyimpanan sangat penting untuk diketahui dalam kaitannya dengan tujuan pasar. Tujuan dari penelitian ini adalah untuk menganalisis pengaruh umur petik pepaya varietas IPB9 terhadap perubahan kualitas dan masa simpannya. Sampel buah pepaya dipanen pada tingkat ketuaan yang dinyatakan dalam hari setelah pembungaan, yaitu 135, 131, 128, 121 dan 114. Setelah dipanen, pepaya diperam dalam alat pemeram buatan dengan perlakuan penambahan gas etilen 50 ppm selama 24 jam. Setelah proses pemeraman, sampel buah pepaya diletakkan di suhu ruang. Hasilpengamatan menunjukkan bahwa buah pepaya yang dipanen pada hari ke 128 mempunyai kandungan pati tertinggi. Setelah proses pemeraman, umur petik 128 hari mempunyai kadar total padatan terlarut sebesar6.7oBrix. Sementara untuk pepaya dengan umur petik 135 dan 131 menunjukkan kandungan total padatan terlarut sebesar 8.3oBrix dan 7.5oBrix pada hari penyimpanan keempat. Untuk umur simpan, pepaya yang dipetik pada umur 128 mempunyai umur simpan yang paling lama selama enam hari, sedangkan pepaya pada umur petik 131 dan 135 hari mempunyai umur simpan yang terpendek selama empat hari. Pepayayang dipetik pada hari ke 114 dan 121 menunjukkan kandungan total padatan terlarut terendah. Dapat disimpulkan bahwa pepaya dengan umur petik 128 hari sesuai untuk tujuan pemasaran jarak jauh karenamempunyai umur simpan yang paling lama.Kata Kunci : umur petik, pepaya varietas IPB9, kandungan pati, penyimpanan, umur simpanDiterima: 27 November 2014; Disetujui: 19 Februari 2015
Pendugaan Kandungan Kimia Mangga Gedong Gincu Menggunakan Spektroskopi Inframerah Dekat Sari, Herna Permata; Purwanto, Yohanes Aris; Budiastra, I Wayan
Agritech Vol 36, No 3 (2016)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (567.642 KB) | DOI: 10.22146/agritech.16599

Abstract

The objective of  this work was to predict the soluble solid content, total acid, sugar acid ratio, and crude fiber of ‘Gedong Gincu’ mango non destructive using Near infrared Spectroscopy. Experiments were carried out using 182 samples of ‘Gedong Gincu’ mango. NIR reflectance spectra measurements were performed at wavelength of 1000-2500 nm using NIRFlex N-500 fiber optic solid. References data were collected from laboratory measurements. Five pre-processing treatments, smoothing 3 points (sa3), normalization (n01), first derivative Savitzky-Golay 9 points (dg1), combination (n01, dg1), and the Multiplicative Scatter Correction (MSC) were used to improve the accuracy of the calibration model. Partial Least Square (PLS) method was used to calibrate NIR data through references data. The results show  that the best method for prediction of soluble non solid spectra were MSC and 12 factor of PLS with calibration value of Correlation Coefficient (r), Square Error Calibration (SEC), Square Error Prediction (SEP),  Ratio of standard error prediction to deviation (RPD) were 0.91, 0.25 %, 0.39 %, 2.14 respectively. Sugar acid ratio content was predictd using  MSC and 12 factor of PLS calibration with values of r, SEC, SEP, RPD were 0.81, 32.08 °Brix/%, 38.44 °Brix/%, 1.45. Soluble solid content was predicted using sa3 and 15 factor of PLS calibration with values of  r, SEC, SEP, RPD were 0.82, 1.04 °Brix, 1.28 °Brix, 1.52 respectively. Total acid was predicted using  dg1 and 3 with the value of  r, SEC, SEP, RPD were 0.74, 0.01 %, 0.12 %, 1.33 respectively. It could be concluded  that the developed model could be used to predict the chemical contents of ‘Gedong Gincu’ mango non destructively. ABSTRAKTujuan dari penelitian ini adalah memprediksi kandungan total padatan terlarut (TPT), total asam, rasio gula asam, dan padatan tidak terlarut (serat kasar) mangga Gedong Gincu secara non destruktif menggunakan spektroskopi inframerah dekat (NIR). Bahan yang digunakan berupa mangga Gedong Gincu sebanyak 182 buah. Pengukuran spektra reflektan NIR dilakukan pada panjang gelombang 1000 – 2500 nm menggunakan NIRFlex N-500 fiber optik solid dilanjutkan pengukuran data referensi laboratorium. Lima pra-proses data spektra yaitu smoothing 3 points (sa3), normalisasi (n01), first derivative Savitzzky-golay (dg1), kombinasi (n01,dg1), dan Multiplicative Scatter Correction (MSC) dilakukan untuk meningkatkan akurasi model kalibrasi. Kalibrasi data NIR dan data kimia dilakukan menggunakan metode Partial Least Square (PLS). Metode terbaik untuk prediksi padatan tidak terlarut diperoleh dengan pra-proses MSC dan kalibrasi PLS dengan nilai Correlation Coefficient (r), Square Error Calibration (SEC), Square Error Prediction (SEP), Ratio of standard error prediction to deviation (RPD) adalah 0,91, 0,25 %, 0,39 %, 2,14, dan faktor PLS 12. Kandungan rasio gula asam diduga dengan pra-proses MSC serta kalibrasi PLS dengan nilai r, SEC, SEP, RPD adalah 0,81, 32,08 °Brix/%, 38,44 °Brix/%, 1,45 dan faktor PLS yang digunakan 12. TPT diduga menggunakan pra-proses sa3 dan kalibrasi PLS dengan nilai r, SEC, SEP, RPD adalah 0,82, 1,04 oBrix, 1,28 °Brix, 1,52. Model kalibrasi total asam diperoleh pra-proses dg1 dan kalibrasi PLS dengan nilai r, SEC, SEP, RPD adalah 0,74, 0,01 %, 0,12 %, 1,33. Hasil penelitian ini menunjukkan bahwa model yang dikembangkan dapat digunakan untuk menduga kandungan kimia mangga Gedong Gincu secara non destruktif.
Peningkatan Nilai Gizi, Sifat Organoleptik dan Sifat Pati Sagu Mutiara dengan Penambahan Buah Kenari (Canarium ovatum) Lawalata, Vita N.; Budiastra, I Wayan; Haryanto, Bambang
Agritech Vol 24, No 1 (2004)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2312.18 KB) | DOI: 10.22146/agritech.13494

Abstract

Sago is a potential local crop for food diversification program. The research aims to 1) improve the nutrition of pearl sago product through canary addition 2) evaluate of chemical-physical and organoleptic quality of pearl sago 3) study the influence of packaging to the product during storage and 4) to predict the shelf life of pearl sago product. The research was done in two steps : I) product development through canary addition of 0 %, 3 %, 6 %, 9 %, 12 % and 15% to pearl sago. 2) packaging and storage the pearl sago using LDPE and PP/alufo/PP. The result shows that canary addition of 9 % and PP/alufo/PP packaging is the best treatment for pearl sago. The product has contents of moisture, protein, fat, ash, carbohydrate and energy of 5.83%, 5.53%, 6.72%, 0.81%, 81.14%, 407.17 Kal, respectively, with shelf life of 256 days.
Klasifikasi Tingkat Kematangan dan Kemasakan Buah Durian dengan Model Neural Network Rejo, Amin; Purwadaria, Hadi K.; Budiastra, I Wayan; Suroso, Suroso; Susanto, Slamet; Nazaruddin, Yul Y
Agritech Vol 21, No 4 (2001)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1138.713 KB) | DOI: 10.22146/agritech.13583

Abstract

This study was aimed to develop the model to predict the maturity and ripeness of durian based on its physical and chemical characteristics using neural network. The physicochemical and acoustic characteristics measurement was fed into the model as the inputs, which provided the levels of maturity and ripeness as the output of the model. The results suggested that the physico-chemical properties and the acoustic charcteristic decreased with the increase of both maturity and ripeness level of durian. The total solid soluble, the water content and the total sugar increased according to the fruits maturity. The total acids increased in the beginning of durian maturing process and then decreased when the maturity and ripeness level reached the mature-over ripened stage. Data training were done by model of neural network: model 4 output, with various node in the hidden layer 4, 6, 8 and 10 nodes. The results recommended that the best model to be applied was model 4 output with 4 nodes in the hidden layer and iteration 1000 and 5000 with the model accuration 87.5 % - 100%.