SANTI NURBAITI
Kelompok Keahlian Biokimia, Fakultas Matematika dan Ilmu Alam ITB.

Published : 4 Documents
Articles

Found 4 Documents
Search

SINTESA ATP BERTANDA P-32 SEBAGAI PERUNUT BIOLOGI MOLEKUL Sarmini, Endang; Herlina, Herlina; Triyanto, Triyanto; Hambali, Hambali; Muthalib, Abdul; Nurbaiti, Santi
Jurnal Radioisotop dan Radiofarmaka Vol 14, No 1 (2011): Jurnal PRR 2011
Publisher : Jurnal Radioisotop dan Radiofarmaka

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

SINTESA ATP BERTANDA P-32 SEBAGAI PERUNUT BIOLOGI MOLEKUL. Kebutuhan perunut DNAIRNA dalam perkembangan biolologi molekul di Indonesia saat ini sangat dirasakan. Salah satunya adalah nukleotida bertanda [?32p]_ATP yang banyak digunakan dalam penelitian bioteknologi. Penguasaan teknik sintesa nukleotida bertanda ini akan sangat mendukung penelitian dalam bidang biologi molekul. Sintesa ini dilakukan dengan reaksi enzimatis yang merupakan bagian dan proses glikolisis, dimulai dari fruktosa 1,6-diphosphat, nukleotida ADP dan radioisotop P-32 dengan menggunakan enzim aldolase, gliseraldehid 3-fosfat, 3-fosfogliseratkinase dan laktat dehidrogenase. Pemumiannya dengan menggunakan kolom kromatografi DEAE Sephadex. ATP bertanda yang dihasilkan berada pada Rf 0, dan P32 pada Rf 0,6. Diharapkan bahwa kebutuhan nukleotida bertanda di Indonesia dapat terpenuhi dengan dihasilkannya nukleotida bertanda [?32p]_ATP ini, yang juga merupakan dasar untuk sintesa nukleotida bertanda lainnya. Kata Kunci: Perunut DNA/RNA, Proses glikolisis, Enzimatis, Radioisotop P-32, Nukleotida bertanda 32p]_ATP ABSTRACT SYNTHESIS OF P-32 LABELED ATP FOR MOLECULAR BIOLOGY TRACER. DNA /RNA tracer demmand in the development of molecular biology in Indonesia is currently strongly felt. One of them is labeled nucleotide [?32p]_ATP which is widely used in biotechnology research. Capability of nucleotide synthesis techniques will support research in the field of molecular biology. This synthesis was done by enzymatic reactions which is a part of the glycolysis process, starting from fructose 1,6-diphosphat, ADP nucleotide and P-32 radioisotope by using aldolase enzyme, glyceraldehyde 3-phosphate, 3phosphoglycerate kinase and lactate dehydrogenase. Purification was perf0D11ed by using DEAE Sephadex column chromatography. The labeled ATP and P-32 were observed at Rf 0 and Rf 0.6. It is expected that the demand of labeled nucleotide in Indonesia can be fulfilled by the synthesized labeled nucleotide [?32p]_ATP that is the base for synthesis of other labeled nucleotide. Keywords: DNA/RNA tracer, glycolysis process, enzymatic, P-32 radioisotope, nucleotide labeled [?32p] ATP  
MODIFIKASI SINTESIS NUKLEOTIDA BERTANDA [γ-32 P] ATP Rahman, Wira Y.; Sarmini, Endang; herlina, herlina; Triyanto, Triyanto; Hambali, Hambali; Muthalib, Abdul; Nurbaiti, Santi
Jurnal Radioisotop dan Radiofarmaka Vol 16, No 1 (2013): JURNAL PRR 2013
Publisher : Jurnal Radioisotop dan Radiofarmaka

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1248.646 KB)

Abstract

ABSTRAKMODIFIKASI SINTESIS NUKLEOTIDA BERTANDA [Y-32P]ATP.Dalam perkembangan biologimolekul, radionuklida dalam bentuk senyawa bertanda telah digunakan sebagai perunut deoxyribonucleicacid (DNA)/ribonucleic acid (RNA) untuk mendalami berbagai macam proses fisiologi dan patologi. Salahsatu senyawa tersebut adalah nukleotida bertanda fosfor-32 (32P) [?-32P]-adenosine triphosphate {[?-32P]-ATP} yang banyak digunakan dalam penelitian biologi molekul. Untuk dapat menunjang penelitian biologimolekul di Indonesia, pada penelitian ini telah dilakukan pembuatan senyawa nukleotida bertanda [?-32P]-ATP melalui reaksi enzimatis dengan melakukan modifikasi pada metoda sintesisnya menggunakanprekursor DL-glyceraldehyde 3-phosphate, nukleotida adenosine di-phosphate (ADP) dan H332PO4, sertaenzim gliseraldehid 3-phosphat dehidrogense, 3-phosphogliserat-kinase dan laktat dehidrogenase. Pemurnian[?-32P]-ATP hasil sintesis dengan menggunakan kolom kromatografi DEAE-Sephadex. Dari proses sintesisdan pemurnian yang telah dilakukan berhasil diperoleh [?-32P]-ATP dengan aktifitas 1,175 mCi dankemurnian radiokimia 99,49%. Dengan berhasilnya dilakukan sintesis dan pemurnian [?-32P]-ATP, makaPusat Radiosiotop dan Radiofarmaka akan dapat menyediakan nukleotida bertanda dimaksud di atas untukmenunjang penelitian biologi molekul di Indonesia.Kata Kunci: nukleotida bertanda [?-32P]ATP, sintesis, reaksi enzimatis, pemurnianABSTRACTMODIFICATION OF SYNTHESIS NUCLEOTIDES [Y-32P] ATP.In molecular biology, radionuclidesin the form of radiolabeled compounds have been widely used as deoxyribonucleic acid (DNA) / ribonucleicacid (RNA) tracer in order to explore a wide range of physiological and pathological processes. One of suchcompounds is [?-32P]-adenosine triphosphate {[?-32P]-ATP} [?-32P]-ATP which has been widely used in thebiotechnology research. In order to support the biotechnology research in Indonesia in this project, [?-32P]-ATP had been synthesized by enzymatic reactions with modifying the method of synthesis using theprecursor DL-glyceraldehydde 3-phosphate, nucleotides Adenosine Diphosphate (ADP) and H332PO4 andenzymes glyceraldehid 3-phosphate dehydrogenase, 3-phosphoglyceryc phosphokinase and lactatedehydrogenase. The purification of the synthesized [?-32P]-ATP, by using DEAE Sephadex columnchromatography.  The synthesis and purification process that had been performed were able in producing of[?-32P]-ATP with radioactivity of 1,175 mCi and  radiochemical purity of 99,49%.. Having successfullyprepared the [?-32P]-ATP and application, in the near future the Radioiotopes and RadiopharmaceuticalsCentre is expected to be able in providing the above-mentioned radiolabeled nucleotide for biotechnologyresearch in Indonesia.Key words : labeled nucleotide [?-32P]-ATP, synthesis, enzimatic reaction, purification
SINTESIS DAN KARAKTERISASI NUKLEOTIDA BERTANDA [α-32P]ATP Rahman, Wira Yusril; Sarmini, Endang; Herlina, H.; Abidin, A.; Triyanto, T.; Hambali, H.; Nurbaiti, Santi
Jurnal Riset Kimia Vol 10, No 1 (2019): March
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jrk.v12i2.319

Abstract

The utilization of nuclear technology in health sector with molecular techniques is increasingly developed today, especially in Indonesia.  One of which is nucleotide compound marked with [α-32P]ATP, this compound has been used as tracer for deoxyribonucleic acid (DNA)/ ribonucleic acid (RNA) in the study of various physiological and pathological processes. [α-32P]ATP is synthesized through several stages of continuous reaction in one reaction vessel. It begins with synthesis of [γ-32P]ATP through an enzymatic reaction, using H332PO4 and ADP, and enzymes  of lactate dehydrogenase, 3-phosphoglycerate phosphokinase and glyceraldehide 3-phospho  dehydrogenase; followed by phosphorilation of 3’AMP with T4 polinucleotide kinase enzyme to produce 3’-[5’-32P]ATP. The result is hydrolyzed with nuclease P1 enzyme to produce [5’-32P]AMP. The unreacted [γ-32P] is degraded by the addition of hexokinase enzyme and glucose. At the final stage of the reaction, the [5’-32P]AMP is  phosphorilated using phosphoenol-piruvat, piruvat kinase, and myokinase to produce [α-32P]ATP. The test results show that the every stage of reaction is characterized using TLC method, PEI cellulose paper as stationary phase and KH3PO4 0,5 M pH 3,5 as mobile phase. At the end of reaction, the yield of [α-32P]ATP reaches 71,7%, at Rf = 0,2.
The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B) Widhyahrini, Khusna; Handayani, Nurrahmi; Wahyuningrum, Deana; Nurbaiti, Santi; Radiman, Cynthia Linaya
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (SCOPUS and Web of Science Indexed, December 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (116.225 KB) | DOI: 10.9767/bcrec.12.3.774.343-350

Abstract

Candida antarctica lipase B (Cal-B) has been widely used in the hydrolysis reaction. However, it has some weaknesses, such as: forming of the heavy emulsion during the process, which is difficult to resolve and has no reusability. Therefore, it needs to be immobilized into a suitable matrix. One of the suitable supporting materials is polyethersulfone (PES) and its synthesis becames the objective of this paper. The PES was synthesized via a polycondensation reaction between hydroquinone and 4,4'-dichlorodiphenylsulfonein N-methylpyrrolidone (NMP) as solvent using Microwave Assisted Organic Synthesis (MAOS) method at170 °C for 66 minutes using an irradiation power of 300 watt. The synthesized PES was characterized by FTIR and 1H-NMR (500 MHz, DMSO-d6). Then the PES membrane was prepared from 20 % of the optimized mixtures of PES, PSf (polysulfone), and PEG (polyethylene glycol) dissolved in 80 % NMP.  The Cal-B was immobilized on the PES membrane by mixing it in a shaker at 30 °C and 100 rpm for 24 h using phosphate buffered saline (PBS). The identification of the immobilized Cal-B was done by using FTIR-ATR spectroscopy and SEM micrographs. The results of Lowry assay showed that the ?Cal-B immobilized? blended-membrane has a loading capacity of 91 mg/cm2 in a membrane surface area of 17.34 cm2. In this work, the activity of immobilized Cal-B was twice higher than the native enzyme in p-NP (p-Nitrophenolpalmitate) hydrolyzing. The results indicated that the synthesized PES showed a good performance when used as a matrix in the immobilization of Cal-B. Copyright © 2017 BCREC Group. All rights reservedReceived: 15th November 2016; Revised: 27th May 2017; Accepted: 24th May 2017; Available online: 23rd October 2017; Published regularly: December 2017How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017). The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B). Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 343-350 (doi:10.9767/bcrec.12.3.774.343-350)