Articles

Found 2 Documents
Search
Journal : Beta: Jurnal Tadris Matematika

Student’s thinking path in mathematics problem-solving referring to the construction of reflective abstraction Sopamena, Patma; Nusantara, Toto; Irawan, Eddy Bambang; Sisworo, Sisworo; Wahyu, Kamirsyah
Beta: Jurnal Tadris Matematika Vol 11 No 2 (2018): Beta November
Publisher : Universitas Islam Negeri (UIN) Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20414/betajtm.v11i2.230

Abstract

[English]: This article is a part of research which aimed to reveal the path of undergraduate students’ thinking in solving mathematical problems referring to the construction of reflective abstraction. Reflective abstraction is the process of thinking in constructing logical structures (logico-mathematical structures) by individuals through interiorization, coordination, encapsulation, and generalization. This article seeks to analyze a student with the simple closed path, as one of the two types of students’ thinking path found in the research, in solving limit problems. The thinking process of the student in solving mathematical problems occurred through the path of interiorization - coordination - encapsulation - generalization then to coordination - encapsulation - generalization. The path of the student’s thinking yields alternative to understand and marshal problem-solving activities in mathematics learning. Keywords: Thinking path, Limit problem, Reflective abstraction, Simple closed path [Bahasa]: Artikel ini merupakan bagian dari penelitian yang bertujuan mengungkap jalur berpikir mahasiswa dalam menyelesaikan masalah matematika berdasarkan konstruksi abstraksi reflektif. Abstraksi reflektif merupakan proses berpikir individu dalam membangun struktur logika (struktur matematis logis) melalui interiorisasi, koordinasi, enkapsulasi, dan generalisasi. Artikel ini akan menganalisis seorang mahasiswa yang memiliki jalur berpikir tertutup sederhan, salah satu dari dua jalur berpikir yang terungkap dalam penelitian, dalam menyelesaikan permasalahan limit. Proses berpikir mahasiswa dalam menyelesaikan masalah matematika berdasarkan konstruksi abstraksi reflektif dapat terjadi melalui jalur interiorisasi – koordinasi – enkapsulasi – generalisasi kemudian ke koordinasi – enkapsulasi – generalisasi. Hasil penelitian ini memberikan alternatif dalam memahami dan merancang aktivitas pemecahan masalah dalam pembelajaran matematika. Kata kunci: Jalur berpikir, Masalah limit, Abstraksi reflektif, Jalur tertutup sederhana
Prospective mathematics teachers’ argumentation structure when constructing a mathematical proof: The importance of backing Laamena, Christina Martha; Nusantara, Toto
Beta: Jurnal Tadris Matematika Vol 12 No 1 (2019): Beta May
Publisher : Universitas Islam Negeri (UIN) Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20414/betajtm.v12i1.272

Abstract

[English]: This qualitative study with phenomenology design aims to investigate the use of backing and its relation to rebuttal and qualifier in prospective mathematics teachers? (PMTs) argumentation when constructing a mathematical proof about algebraic function. The data were collected through subjects' works on the proof, recorded think-aloud data, and in-depth interviews. Data analysis was guided by Toulmin?s argumentation scheme. The results show that the PMTs used three types of backing, i.e., backing in the form of definitions or theorems (reference backing), examples of numbers (numerical backing) and graphs of functions (graphical backing). The PMTs utilized the backings to strengthen deductive and inductive warrant. A numerical backing is used when a warrant cannot justify the truth of a claim. Graphical backing is used to convince oneself about the truth of the data that has been made while the reference backing is only clarification when students have understood or have knowledge of the statement given. Numerical and graphical backing relate directly to rebuttal and provide counter-examples and qualifier of the claim. A numerical backing makes students more confident about claims that are generated compared to reference backing. Keywords: Argumentation, Mathematical proof, Backing [Bahasa]: Penelitian kualitatif dengan desain fenomenologi ini bertujuan untuk menyelidiki penggunaan backing dan hubungannya dengan rebuttal dan qualifier dalam membangun bukti matematika terkait fungsi aljabar oleh calon guru matematika. Data dikumpulkan melalui hasil kerja siswa, rekaman think aloud, dan wawancara mendalam. Analisis data merujuk pada skema argumentasi Toulmin. Hasil penelitian menunjukkan bahwa backing yang digunakan siswa tidak hanya berbentuk teorema atau definisis (reference backing) tetapi juga contoh-contoh bilangan (numerical backing) dan grafik fungsi (graphical backing). Ketiga jenis backing tersebut untuk memperkuat warrant induktif maupun deduktif. Numerical backing digunakan ketika warrant tidak dapat menjustifikasi kebenaran klaim. Graphical backing digunakan untuk meyakinkan diri sendiri tentang kebenaran klaim yang telah dibuat sedangkan reference backing hanya bersifat klarifikasi karena siswa telah memahami pernyataan yang diberikan. Numerical backing dan graphical backing berhubungan langsung dengan rebuttal untuk memberikan contoh penyangkal dan jaminan kebenaran (qualifier) klaim. Numerical backing membuat siswa lebih percaya diri tentang klaim yang dihasilkan dibandingkan dengan reference backing. Kata kunci: Argumentasi, Bukti matematis, Backing