Julianto S.Si
Program Studi Matematika

Published : 1 Documents
Articles

Found 1 Documents
Search

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) S.Si, Julianto; Puspita, Entit
Jurnal EurekaMatika (JEM) Vol 1, No 1 (2013): Jurnal EurekaMatika
Publisher : Program Studi Matematika Jurusan Pendidikan Matematika FPMIPA UPI

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dalam melakukan investasi dalam saham, investor biasanya memerhatikan tingkat pengembalian (return) dan risiko dari investasi saham tersebut. Dalam penerapannya pada teori finansial, tingkat pengembalian diasumsikan sebagai mean dan risiko diasumsikan sebagai volatilitas dari harga saham. Untuk memodelkan harga saham dapat digunakan beberapa model seperti model Autoregressive (AR), Moving Average (MA), dan Autoregressive Moving Average (ARMA) yang memiliki asumsi variansi residual konstan atau pun model Autoregressive Conditional Heteroscedastic (ARCH) dan Generalized Autoregressive Conditional Heteroscedastic (GARCH), dimana model ini dapat memodelkan variansi residual yang tidak konstan. Dalam teori finansial dinyatakan bahwa aset dengan risiko yang lebih tinggi akan memberikan return yang lebih tinggi juga pada rata-ratanya. Mengacu pada hal tersebut maka dikembangkan model Generalized Autoregressive Conditional Heteroscedastic in mean (GARCH-M). Akan tetapi, model GARCH-M mempunyai asumsi bahwa terdapat gejolak yang bersifat simetris dalam volatilitasnya. Kenyataannya, di lapangan dapat ditemukan beberapa kasus dimana terdapat gejolak yang bersifat asimetris yang biasa disebut leverage effect dalam volatilitas. Sehingga untuk kasus seperti ini model yang lebih tepat adalah model volatilitas Exponential Generalized Autoregressive Conditional Heteroscedastic in mean (EGARCH-M). Selain return, pengukuran risiko juga merupakan hal yang penting. Salah satu alat ukur yang digunakan untuk mengestimasi risiko adalah Value at Risk (VaR).Kata kunci: Volatilitas, Return, Heteroscedastic, Asimetris, EGARCH-M, Value at Risk (VaR)