Articles

Found 15 Documents
Search
Journal : Indonesian Journal of Biotechnology

A Study on Production of Poly-β-Hydroxybutyrate Bioplastic from Sago Starch by Indigenous Amylolytic Bacteria Yanti, Nur Arfa; Sembiring, Langkah; Margino, Sebastian; Muhiddin, Nurhayani H.
Indonesian Journal of Biotechnology Vol 18, No 2 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (205.882 KB)

Abstract

Bacillus sp. PSA10 and Bacillus sp. PPK5 were two indigenous strain amylolytic bacteria from SoutheastSulawesi that have ability to produce bioplastic poly-β-hydroxybutyrate (PHB) from sago starch. The study wasattempted to determine the mechanism of PHB production by bacteria amylolytic was grown on sago starchcontainingmedia. Two amylolytic bacteria i.e. Bacillus sp. PSA10 and Bacillus sp. PPK5 was grown for 168 hin a mineral salts medium with sago starch as carbon source. Growth of amylolytic bacteria was monitoredby cell dry weight. Extraction of PHB was done by N-hexane acetone-diethyl ether method and PHB contentwas quantifi ed with UV spectrophotometer at 235 nm. Glucose level was determined by using kit of glucoseGOD 10” and was quantifi ed with spectrophotometer at 500 nm. Sago starch concentration was determinedby phenol method using specthrophotometer at 490 nm. The result of the study showed that Bacillus sp.PSA10 was produced PHB up to 66,81 % (g PHB/g cell dry weight) at 48 h and Bacillus sp. PPK5 up to 24,83% (g PHB/g cell dry weight) at 84 h. Bacillus sp. PSA10 has ability to converse sago starch to be PHB directlywithout glucose accumulation in the media, whereas Bacillus sp. PPK5 have to accumulate glucose as productof sago starch hydrolysis to produce of PHB. PHB synthesis by Bacillus sp. PHB production on sago starchof the Bacillus sp. PSA10 was found to be growth-associated whereas Bacillus sp. PPK5 was found to be nongrowth-associated. Therefore, two indigenous amylolytic bacteria were having of difference in biosynthesismechanism of PHB in sago starch medium and their characteristics of PHB synthesis should be consideredin developing cultivation methods for the effi cient production of PHB.Keywords : Production, PHB, Amylolytic bacteria, Sago starch.
Production of Poly--hydroxybutyrate (PHB) from Sago Starch by The Native Isolate Bacillus megaterium PSA10 Yanti, Nur Arfa; Sembiring, Langkah; Margino, Sebastian
Indonesian Journal of Biotechnology Vol 14, No 1 (2009)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (340.322 KB)

Abstract

A new bacterial strain that produces amylase and poly-a-hidroxybutyrate (PHB) using sago starch as carbon source was characterized and identified to be member of the Bacillus megaterium group based on phenotypic characteristics  and 16S rDNA gene sequences. Amylase activity was determined spectrophotometrically on the basis of substrate concentration reduction. PHB production was quantified with UV spectrophotometer. The polymer produced by B. megaterium PSA10 was identified by  Fourier Transform Infrared spectroscopy (FTIR). The result of the study showed that the amylase specific activity B. megaterium PSA10 was 593,61 DUN/mg protein and PHB production from sago starch was 52,28 % of cell dry weight (CDW). FTIR analysis of the polymer indicated that the strain B.megaterium PSA10 was a potent PHB producer.
Phylogenetic relationship of Gram Negative Bacteria of Enterobacteriaceae Family in the Positive Widal Blood Cultures based on 16S rRNA Gene Sequences Darmawati, Sri; Sembiring, Langkah; Asmara, Widya; Artama, Wayan T.; Kawaichi, Masashi
Indonesian Journal of Biotechnology Vol 19, No 1 (2014)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.864 KB)

Abstract

The purpose of this study was to analyze the phylogenetic relationship of Gram negative bacteria (3strains of Salmonella typhi, 1 strain of Escherichia coli, 1 strain of Serratia marcescens, and 3 strains of Enterobactercloacae) of Enterobacteriaceae family in positive Widal blood cultures based on 16S rRNA gene sequences. Theresults respectively showed that each two 16S rRNA gene clones of Serratia marcescens KD 08.4 had a closerelationship with 16S rRNA gene of Serrratia marcescens ATCC 13880 (similarity: 99.53-99.8%), Eschericia coliBA 30.1 with Eschericia coli ATCC 11775T (similarity: 99.38-99.67%), Salmonella typhi BA 07.4, Salmonella typhiKD 30.4, and Salmonella typhi SA 02.2 with Salmonella typhi ATCC 19430T (similarity: 99.4-100%) as well as theisolates of Enterobacter cloacae SA 02.1, Enterobacter cloacae BA 45.4.1, one 16S rRNA gene clone of Enterobactercloacae TG 03.5 with Enterobacter cloacae ATCC 23373 (similarity: 99.0-99.87%).
Production of Poly-α-hydroxybutyrate (PHB) from Sago Starch by The Native Isolate Bacillus megaterium PSA10 Yanti, Nur Arfa; Sembiring, Langkah; Margino, Sebastian
Indonesian Journal of Biotechnology Vol 11, No 1 (2006)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (340.322 KB)

Abstract

A new bacterial strain that produces amylase and poly-α-hidroxybutyrate (PHB) using sago starch as carbon source was characterized and identified to be member of the Bacillus megaterium group based on phenotypic characteristics and 16S rDNA gene sequences. Amylase activity was determined spectrophotometrically on the basis of substrate concentration reduction. PHB production was quantified with UV spectrophotometer. The polymer produced by B. megaterium PSA10 was identified by Fourier Transform Infrared spectroscopy (FTIR). The result of the study showed that the amylase specific activity B. megaterium PSA10 was 593,61 DUN/mg protein and PHB production from sago starch was 52,28 % of cell dry weight (CDW). FTIR analysis of the polymer indicated that the strain B.megaterium PSA10 was a potent PHB producer.
Molecular Identification of Lactic Acid Bacteria Producing Antimicrobial Agents from Bakasang, An Indonesian Traditional Fermented Fish Product Lawalata, Helen Joan; Sembiring, Langkah; Rahayu, Endang Sutriswati
Indonesian Journal of Biotechnology Vol 16, No 2 (2011)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (43.035 KB)

Abstract

AbstractTwenty seven strains of lactic acid bacteria (LAB) were isolated from bakasang, Indonesian traditional fermented fish product. In general, LAB have inhibitory activity againts pathogenic bacteria and spoilage bacteria. Screening for antimicrobia activity of isolates were performed with well-diffusion method. One isolate that was designed as Pediococcus BksC24 was the strongest against bacteria pathogenic and spoilage bacteria. This strain was further identified by 16S rRNA gen sequence comparison. Isolates LAB producing antimicrobial agents from bakasang were identified as Pediococcus acidilactici.Keywords : Bakasang, LAB, antimicrobial, phenotypic characteristics, 16S rRNA gene
Chemosystematic of Enterobacteriaceae Familia Obtained from Blood Cultures Based on Total Protein Profiles Darmawati, Sri; Sembiring, Langkah; Asmara, Widya; Artama, Wayan T.; Anwar, Syaiful
Indonesian Journal of Biotechnology Vol 18, No 1 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (303.344 KB)

Abstract

The purpose of this study was to determine the chemosystematic of 14 strains of bacteria in blood cultures from Semarang using 1 reference strain S. typhi NCTC 786, based on the total protein profi les with the similarity relationship analysis based on Simple Matching Coeffi cient (SSM) analysis and algorithm methodof unweighted pair group with averages (UPGMA) presented in a dendrogram. The results showed that thechemosystematic based on the total protein profi les using SDS-PAGE method can classify the member ofbacterial strains of each species. The Clusters respectively consist of 4 strains of S. typhi (similarity: 89.7%),2 strains of Ser. marcescens (similarity: 89.7%), two strains of E. coli, and one strain of Salmonella ssp, S. typhi NCTC 786 (similarity: 100%). Those three incorporated clusters had the similarity value of 75.3%. Those four strains of Ent. cloacae composed in one cluster (similarity: 100%) are incorporated in a cluster consisting of one strain of Kleb. pneumoniae (similarity: 92.9%). Both clusters were incorporated in a cluster consisting of S. typhi NCTC 786 (similarity: 67.9%).Key words: Enterobacteriaceae, chemosystematic, blood cultures, protein profile
Characterization of Streptomyces spp. Producing Indole-3-acetic acid as Biostimulant Agent de Fretes, Charlie Ester; Sembiring, Langkah; Purwestri, Yekti Asih
Indonesian Journal of Biotechnology Vol 18, No 2 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (273.427 KB)

Abstract

Twenty six isolates of Streptomyces spp. obtained from Cyperus rotundus L. rhizosphere were tested forability to produce indole-3-acetic acid (IAA) in yeast malt extract (YM) medium containing 2 mg/mL tryptophan.Screening of the isolates for ability to produce IAA was carried out by adding Salkowski reagent in bacteriaculture and was measured quantitatively by spectrophotometer at λ 530 nm. Thin Layer Chromatography (TLC)method was used to determine IAA. To ensure the IAA production in Streptomyces isolates, gene involved inIAA biosynthesis was detected by amplifying Tryptophan Monooxigenase (iaaM) gene. The study of the effectof tryptophan on the production of IAA was measured at different concentrations of tryptophan (0, 1, 2, 3,4, 5 mg/mL) in the bacterial culture. The result showed that there were two Streptomyces spp. isolates whichcould produce IAA, namely the isolates of Streptomyces sp. MS1 (125.48 μg/mL) and Streptomyces sp. BR27(104.13 μg/mL). The TLC result showed that the compound in both isolates was identifi ed to be IAA. Theamplifi cation results showed that iaaM gene was detected in both isolates. This results indicated that the IAMpathway is predicted involved in the biosynthesis of IAA in the selected isolates. Both of the isolates were ableto produce IAA after 24 h incubation and the highest production was at 120 h incubation with the concentrationof tryptophan was 2 mg/mL dan 1 mg/mL, respectively. Therefore, it is concluded that Streptomyces spp.isolates are able to produce IAA and potentially to be utilized as biostimulat agent.Keywords: Streptomyces spp., indole-3-acetic acid (IAA), indole-3-acetamide (IAM), Tryptophan Monooxigenasegene (iaaM)
Production of Poly-α-hydroxybutyrate (PHB) from Sago Starch by The Native Isolate Bacillus megaterium PSA10 Yanti, Nur Arfa; Sembiring, Langkah; Margino, Sebastian
Indonesian Journal of Biotechnology Vol 14, No 1 (2009)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (340.322 KB) | DOI: 10.22146/ijbiotech.7804

Abstract

A new bacterial strain that produces amylase and poly-a-hidroxybutyrate (PHB) using sago starch as carbon source was characterized and identified to be member of the Bacillus megaterium group based on phenotypic characteristics  and 16S rDNA gene sequences. Amylase activity was determined spectrophotometrically on the basis of substrate concentration reduction. PHB production was quantified with UV spectrophotometer. The polymer produced by B. megaterium PSA10 was identified by  Fourier Transform Infrared spectroscopy (FTIR). The result of the study showed that the amylase specific activity B. megaterium PSA10 was 593,61 DUN/mg protein and PHB production from sago starch was 52,28 % of cell dry weight (CDW). FTIR analysis of the polymer indicated that the strain B.megaterium PSA10 was a potent PHB producer.
Analysis of whole cell protein profiles by SDS-PAGE to identify indigenous cellulose-producer acetic acid bacteria Sarkono, Sarkono; Moeljopawiro, Soekarti; Setiaji, Bambang; Sembiring, Langkah
Indonesian Journal of Biotechnology Vol 21, No 2 (2016)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (909.285 KB) | DOI: 10.22146/ijbiotech.27166

Abstract

This study was carried out to analyze the suitability of the identification of four indigenous cellulose-producing acetic acid bacterial isolates (ANG29, KRE65, ANG32 and SAL53) based on the analysis of whole cellular protein profiles against identification based on phenotypic traits. Whole cellular protein profiles were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. The whole cellular protein profiles obtained from sample isolates, were compared with reference isolates for species identification. The results showed that based on visual observations can be determined as much as 12 bands of protein with a molecular weight of 19,099 KDa up to 132.182 KDa. Based on the analysis of protein bands were detected visually, fourth indigenous cellulose- producing acetic acid bacterial isolates in the study had a higher similarity profile to the reference strain Gluconacetobacter xylinus BTCC 769 compared with other reference strains namely G. hansenii NBRC 14820T. This condition is consistent with the results of the identification of fourth cellulose producing acetic acid bacterial isolates based on phenotypic traits. Thus, the whole cellular protein profiles by SDS-PAGE technique can be used as a one of method to identification of cellulose producing acetic acid bacterial isolates.
Characterization of Streptomyces spp. Producing Indole-3-acetic acid as Biostimulant Agent de Fretes, Charlie Ester; Sembiring, Langkah; Purwestri, Yekti Asih
Indonesian Journal of Biotechnology Vol 18, No 2 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (273.427 KB) | DOI: 10.22146/ijbiotech.7872

Abstract

Twenty six isolates of Streptomyces spp. obtained from Cyperus rotundus L. rhizosphere were tested forability to produce indole-3-acetic acid (IAA) in yeast malt extract (YM) medium containing 2 mg/mL tryptophan.Screening of the isolates for ability to produce IAA was carried out by adding Salkowski reagent in bacteriaculture and was measured quantitatively by spectrophotometer at λ 530 nm. Thin Layer Chromatography (TLC)method was used to determine IAA. To ensure the IAA production in Streptomyces isolates, gene involved inIAA biosynthesis was detected by amplifying Tryptophan Monooxigenase (iaaM) gene. The study of the effectof tryptophan on the production of IAA was measured at different concentrations of tryptophan (0, 1, 2, 3,4, 5 mg/mL) in the bacterial culture. The result showed that there were two Streptomyces spp. isolates whichcould produce IAA, namely the isolates of Streptomyces sp. MS1 (125.48 μg/mL) and Streptomyces sp. BR27(104.13 μg/mL). The TLC result showed that the compound in both isolates was identifi ed to be IAA. Theamplifi cation results showed that iaaM gene was detected in both isolates. This results indicated that the IAMpathway is predicted involved in the biosynthesis of IAA in the selected isolates. Both of the isolates were ableto produce IAA after 24 h incubation and the highest production was at 120 h incubation with the concentrationof tryptophan was 2 mg/mL dan 1 mg/mL, respectively. Therefore, it is concluded that Streptomyces spp.isolates are able to produce IAA and potentially to be utilized as biostimulat agent. Keywords: Streptomyces spp., indole-3-acetic acid (IAA), indole-3-acetamide (IAM), Tryptophan Monooxigenasegene (iaaM)