Susi Setiawani
FKIP UNEJ

Published : 56 Documents
Articles

EFFECTIVENESS OF EIGHTH ORDER RUNGE-KUTTA METHOD TO SOLVE THE MATHEMATICAL MODEL OF MALARIA DISEASE TRANSMISSION Ardhilia, Reza Mega; Dafik, D; Setiawani, Susi
KadikmA Vol 4, No 2: Agustus 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak. Banyak permasalahan di lingkungan kehidupan kita yang dapat dibentuk ke dalam model matematika sehingga dapat dianalisis secara matematik. Salah satu permasalahan itu adalah kejadian endemi, seperti transmisi penyakit malaria. Model matematika transmisi penyakit malaria berbentuk system Persamaan Diferensial Biasa (PDB) non linier orde satu. Dalam tulisan ini akan dibahas efektivitas dan efisiensi metode Runge-Kutta orde delapan yang dibandingkan dengan metode Adams Bashforth-Moulton orde sembilan. Selain itu juga akan dicari sifat-sifat, formula, konvergenitas, dan format pemrograman MATLAB dari metode itu. Efektivitas suatu metode bergantung pada error. Sedangkan efisiensi bergantung pada waktu tempuh suatu metode untuk menyelesaikan masalah. Metode pengumpulan data yang digunakan adalah metode dokumentasi dan eksperimen. Hasil dari tulisan ini yaitu sifat dan formula metode Runge-Kutta orde delapan, pembuktian konvergensi metode tersebut secara teoritis, dan format pemrograman yang hasilnya digunakan untuk menentukan metode yang paling efektif dan efisien untuk menyelesaikan model transmisi penyakit malaria. Kata kunci : Efektivitas, Efisiensi, Metode Runge-Kutta, Transmisi malaria.
THE EFFECTIVENESS OF RUNGE-KUTTA METHOD OF ORDER NINE TO SOLVE THE IMMUNITY MODEL FOR INFECTION OF MYCOBACTERIUM TUBERCULOSIS Anggraeni, Dewi; Dafik, D; Setiawani, Susi
KadikmA Vol 4, No 2: Agustus 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak. Model sistem kekebalan tubuh terhadap infeksi Mycobacterium tuberculosis telah dikembangkan dan dikemas dalam bentuk sistem persamaan diferensial biasa non linier order satu. Model tersebut sangat komplek sehingga memerlukan metode numeric untuk menyelesaikannya. Salah satu metode numerik yang yang efektif adalah metode Runge-Kutta. Penelitian ini akan merumuskan formula metode Runge-Kutta order sembilan, dan menentukan sifat dari metode tersebut sebelum merumuskannya, serta menganalisis konvergensi dan efektivitas dari metode Runge-Kutta order sembilan bila dibandingkan dengan metode Adam Bashforth-Moulton order sembilan. Metode dikatakan efektif dan efisien bila error yang terjadi pada metode dalam menyelesaikan model semakin kecil (menuju nol) dan waktu yang dibutuhkan metode untuk menyelesaikan model matematika semakin sedikit. Hasil penelitian menunjukkan bahwa metode Runge-Kutta order sembilan lebih efisien dan efektif dibandingkan metode Adam Bashforth-Moulton order sembilan dalam menyelesaikan model sistem kekebalan tubuh terhadap infeksi Mycobacterium tuberculosis. Kata kunci : Metode Runge-Kutta order sembilan, konvergensi, efektivitas, model sistem kekebalan tubuh terhadap infeksi Mycobacterium tuberculosis.
PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA METODE GENIUS LEARNING DENGAN PENDEKATAN OPEN ENDED POKOK BAHASAN SISTEM PERSAMAAN LINIER DUA VARIABEL DI SEKOLAH MENENGAH PERTAMA (SMP) KELAS VIII SEMESTER GASAL Noviliya, Ira Noviliya; Setiawan, Toto Bara; Setiawani, Susi
KadikmA Vol 4, No 2: Agustus 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract.Genius Learning method of Open Ended approach is a learning that creates a positive and conducive in learning process. So, the student can improve their logical thinking and creative thinking.The research aims to know the process and resultof Development ofMathematics Learning MaterialsBased on Genius Learning Method with Open Ended Approach for Linier Equation System in Two Variable of Junior High School at Eight Grade of Odd Semester.The development of learning materials refers toThiagarajan, Semmel and Semmel Model ( 4-D Model). The product of the research are lesson plan, student book, worksheet, and evaluation test. This product has been implemented in learning of Genius Learning Method with Open Ended in all of learning sets. Based on validation process and tryout the learning sets can be concluded that the learning sets had been appropriate with validate, practice, and effective criteria. Key Words: Genius Learning Method, Open Ended Approach,Linier Equation System in Two Variable, 4-D Model.
THE EFFECTIVENESS OF ADAMSBASHFORTH-MOULTONORDER 12 METHOD IN ANALYZING THE RABIES VIRUS TRANSMISSION MODEL ArRuhimat, QurrotaA’yuniArRuhimat A’yuni; Dafik, D; Setiawani, Susi
KadikmA Vol 4, No 1 (2013): April 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. Tujuan dari penelitian ini adalah untuk mengetahui efektivitas metode Adams Bashforth-Moulton dalam menganalisis model penularan virus Rabies. Model matematika sistem penularan virus Rabies direpresentasikan dalam bentuk persamaan diferensial biasa (PDB) non linear orde satu sehingga sulit diselesaikan dengan metode analitik. Metode numerik Adams Bashforth-Moulton order dua belas digunakan dalam penelitian ini karena sudah terbukti merupakan metode yang lebih teliti dalam menyelesaikan permasalahan yang sulit diselesaikan secara analitik. Sebagai perbandingan, digunakan metode Adams Bashforth-Moulton order sembilan untuk menganalisis tingkat keakuratan dan keefektivannya. Hasil penelitian menunjukkan bahwa metode Adams Bashforth-Moulton order dua belas memiliki nilai error yang lebih kecil dibandingkan metode Adams Bashforth-Moulton order sembilan. Hal ini menunjukkan metode Adams Bashforth-Moulton order dua belas lebih efektif dalam menganalisis model dinamika penularan virus Rabies. Kata Kunci: Model Dinamika Penularan Virus Rabies, Metode Adams Bashforth-Moulton Order 12, program MATLAB
PENERAPAN PEMBELAJARAN KOOPERATIF TIPE CIRC (COOPERATIVE INTEGRATION OF READING AND COMPOSITION) UNTUK ENINGKATKAN HASIL BELAJAR SISWA PADA POKOK BAHASAN IRISAN DAN GABUNGAN DUA HIMPUNAN KELAS VII A SMP 1 ISLAMJEMBER SEMESTER GENAP TAHUN PELAJARAN 2013 Khoroid, Mauhibatul; Trapsilasiwi, Dinawati; Setiawani, Susi
KadikmA Vol 4, No 3: Desember 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. The goals of this research were: (1) to describe the application of cooperative learning type CIRC; (2) to analyze the students’ activities; (3) to analyze the students’ achievement achievement at 7 A Islamic Junior High School Jember. The type of this research was Classroom Action Research. The research methodology of this study used Hopkins scheme model which is spiral shaped. Data collection method of this research used observation, documentation, interview, and test. The data analysis used: (1) the percentage of students learning activities; (2) the percentage of achievement. This research was done through two cycles and there was two meeting in every cycle. The percentage classically of achievement in first cycle was 26,67 %. The percentage of students achievement at second cycle was 86,67 %. Key Words : Students’ activities, Implementing of cooperative learning CIRC, Intersection and union of two sets
PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA BILINGUAL MELALUI MODEL PEMBELAJARAN BERBASIS MASALAH (PROBLEM BASED INSTRUCTION) PADA SUB POKOK BAHASAN PERSEGI PANJANG DAN PERSEGIKELAS VII Rahmawati, Evi; Hobri, H; Setiawani, Susi
KadikmA Vol 4, No 3: Desember 2013
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract.Problem Based Instruction is kind of learning model which introducing students to a real and meaningful problems. The phases of PBI are (1) orientating the students to a problem, (2) organizing the students to learn, (3) guiding the individual or group research, (4) developing and presenting the result, (5) analyzing and evaluating problem solving process. This research aims to develop the set of learning, such as syllabus, lesson plan, student book, student worksheet, and evaluation test by using Thiagarajan Model which consist of four steps such as define, design,develop, and disseminate. But this research just use the three of them, without disseminate step. SMP Negeri 3 Jember is elected as the research place. The coefficient validities of syllabus, lesson plan, student book, student worksheet, and evaluation test respectively are 0,975; 0,982; 0,984; 0,980; and 0,992. Since all of those coefficient more than 0,6, so we can conclude that the set of learning is valid and proper to be used. The reliability coefficient of evaluation test is 0,612717. Besides, the each item validity of evaluation test also showed a high number. There are five item problems where the coefficient validities of each number are 0,819533; 0,98036; 0,958226; 0,894288; and 0,960059. Key Words :Problem Based Instruction Learning Model, Thiagarajan, The Set of Learning, Validity, and Reliability.
NILAI KETAKTERATURAN TOTAL SISI DARI GRAF TANGGA (STAIR GRAPH) Wulandari, Septiyani Setyo; Slamin, S; Setiawani, Susi
KadikmA Vol 5, No 2: Agustus 2014
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. The total edges labelling λ is called an edge irregular total k-labelling of a graph G if every two distinct edges u and v in G ωt(u)≠ωt(v). The total edge irregularity strength of G is the minimum positive integer k for which G has a total edge irregular k-labelling. There are not many graphs of which their total edge irregularity strengths are known. In this article, we investigate the total edge irregularity strength of Stair Graph tes(Stn) and union of m isomorphic Stair Graphs tes(mStn). Key Words: Total edge irregularity strength, Stair Graph (Stn).
NILAI KETAKTERATURAN TOTAL SISI DARI GRAF TUNAS KELAPA A, Moch. Zaenal; Slamin, S; Setiawani, Susi
KadikmA Vol 5, No 3: Desember 2014
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. A total edge irregular labeling on a graph G which has |E| edges and |V| vertices is an assignment of positive integer number as labels to both vertices and edges so that the weights calculated at every edges are distinct. The weight of an edge xy in G is defined as the sum of the label of xy and the labels of two vertices x and y, that is w(xy) = (x)+ (xy)+ (y). The total edge irregularity strength of G, denoted by tes(G), is the smallest positive integer k for which G has an edge-irregular total k-labelling. In this paper, we determine the exact value of the total edge (vertex) irregularity strength of Coconut Sprout Graph (CRn,m) and the union of isomorphic and non-isomorphic Coconut Sprout Graph. Key Words : total edge irregular labeling, total edge irregularity strength, coconut sprout graph.
ANALISIS ALIRAN UDARA PADA JEMBATAN SURAMADU DENGAN MENGGUNAKAN METODE VOLUME HINGGA Aprianto, Dody Dwi; Fatahillah, Arif; Setiawani, Susi
KadikmA Vol 5, No 3: Desember 2014
Publisher : KadikmA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract.This study was aimed to determine the air flow on the Suramadu bridge during extreme conditions. Computational Fluid Dynamics (CFD) is the science study of the flow fluida where air flow is one of them. The wind velocity data that will be examined in this study derived from the previous research. The other data, namely density, viscosity, gravity and pressure obtained from Wikipedia etc. The results of this study in the form of the mathematical model for air flow in the Suramadu bridge obtained using the vinite volume methods. The model was discretized by using upwind Quadratic Interpolation Convective Kinematics (QUICK) to obtain a matrix of size n x n that will be solved by using iterative cojugate gradient methods using MATLAB and Fluent programs. The resulth show that air velocity of Suramadu bridge is extreamly high. It dengerous for any vehicles through the bridge. Key Words: Mathematical Models, Finite Volume Methode, Computational Fluid Dynamics (CFD), Fluent, MATLAB, Discretization.
Pelabelan Total Super (a,d)-Sisi Antimagic Pada Graf Buah Naga Nurvitaningrum, Agnes Ika; Dafik, Dafik; Setiawani, Susi
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1, No 1 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G$ is called an $(a,d)$-edge-antimagic total labeling if there exist a one-to-one mapping $f : f(V)={1,2,3,...,p} o f(E)={1,2,dots,p+q}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv in E(G)$, form an arithmetic progression ${a,a+d,a+2d,dots,a+(q-1)d}$, where $a>0$ and $dge 0$ are two fixed integers, form an arithmetic sequence with first term $a$ and common difference $d$. Such a graph $G$ is called {it super} if the smallest possible labels appear on the vertices. In this paper we recite super $(a,d)$-edge-antimagic total labelling of connected  Dragon Fruit Graph. The result shows that Dragon Fruit Graph have a super edge antimagic total  labeling for $din{0,1,2}$.