Tatag Yuli Eko Siswono
Universitas Negeri Surabaya

Published : 19 Documents
Articles

Found 19 Documents
Search

EXAMINING PROSPECTIVE TEACHERS’ BELIEF AND PEDAGOGICAL CONTENT KNOWLEDGE TOWARDS TEACHING PRACTICE IN MATHEMATICS CLASS: A CASE STUDY Muhtarom, Muhtarom; Juniati, Dwi; Siswono, Tatag Yuli Eko
Journal on Mathematics Education Vol 10, No 2 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.10.2.7326.185-202

Abstract

Beliefs and pedagogical content knowledge (PCK) are two factors influencing teaching practice in the classroom. This research aims to describe the beliefs and PCK of the prospective mathematics teachers and the relationship between the two factors on the teaching practices in the mathematics classroom. Participant in this research includes a prospective teacher who has taken a micro teaching subject and has good communication skill. Data were collected through interview and video analysis on the teaching practice in the classroom. The data obtained were coded, simplified, presented, and triangulated for the credibility and concluded. The result of the research shows that the prospective teachers who hold a constructivist belief view mathematics as a dynamic knowledge which evolves and is regarded as the space of creation for humans. Their beliefs on the nature of mathematics support the belief in the teaching-learning process in mathematics classrooms. Furthermore, a good understanding of the prospective teachers have on the components of the PCK has been sufficient, which can be identified in every step of practical activities in the classroom. More elaboration on the relationship between the belief and PCK is presented in this research.
LEVELING STUDENTS’ CREATIVE THINKING IN SOLVING AND POSING MATHEMATICAL PROBLEM Siswono, Tatag Yuli Eko
Journal on Mathematics Education (JME) Vol 1, No 01 (2010): Journal on Mathematics Education (JME)
Publisher : IndoMS Pusat

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Many researchers assume that people are creative, but their degree ofcreativity is different. The notion of creative thinking level has beendiscussed .by experts. The perspective of mathematics creative thinkingrefers to a combination of logical and divergent thinking which is basedon intuition but has a conscious aim. The divergent thinking is focusedon flexibility, fluency, and novelty in mathematical problem solving andproblem posing. As students have various backgrounds and differentabilities, they possess different potential in thinking patterns,imagination, fantasy and performance; therefore, students have differentlevels of creative thinking. A research study was conducted in order todevelop a framework for students’ levels of creative thinking inmathematics. This research used a qualitative approach to describe thecharacteristics of the levels of creative thinking. Task-based interviewswere conducted to collect data with ten 8thgrade junior secondary schoolstudents. The results distinguished five levels of creative thinking,namely level 0 to level 4 with different characteristics in each level.These differences are based on fluency, flexibility, and novelty inmathematical problem solving and problem posing.Keywords: student’s creative thinking, problem posing, flexibility,fluency, novelty
Pembelajaran Learning Cycle 5E Berbasis Pengajuan Masalah untuk Meningkatkan Hasil Belajar Siswa Kelas X pada Topik Trigonometri Shofiah, Siti; Lukito, Agung; Siswono, Tatag Yuli Eko
Kreano, Jurnal Matematika Kreatif-Inovatif Vol 9, No 1 (2018): Kreano, Jurnal Matematika Kreatif-Inovatif 9(1)
Publisher : Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Sema

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/kreano.v9i1.9856

Abstract

Artikel ini bertujuan untuk (1) menghasilkan perangkat pembelajaran learning cycle–5E berbasis pengajuan masalah pada topik trigonometri di kelas X, (2) mendeskripsikan keefektifan pembelajaran (3) Untuk membandingkan hasil belajar siswa dengan pembelajaran Learning Cycle 5E berbasis pengajuan dengan hasil belajar siswa yang mengikuti pembelajaran konvensional Pengembangan perangkat pembelajaran dilakukan dengan menggunakan model Morrison. Berdasarkan hasil ujicoba perangkat diperoleh perangkat learning cycle 5E berbasis pengajuan masalah berkualitas baik, karena memenuhi syarat-syarat: (1) kemampuan guru dalam mengelola pembelajaran baik, (2) aktivitas siswa efektif, (3) respons siswa positif, (4) tes hasil belajar valid, reliabel, dan sensitive, (5) ketuntasan belajar secara klasikal tercapai. Sedangkan hasil penelitian pada kelas eksperimen berdasarkan analisis statistik deskriptif diperoleh bahwa learning cycle 5E berbasis pengajuan masalah efektif untuk mengajarkan materi trigonometri. Berdasarkan analisis statistik inferensial dengan mengunakan anakova diperoleh kesimpulan bahwa hasil belajar siswa yang mengikuti learning cycle 5E berbasis pengjuan masalah lebih baik dibandingkan dengan hasil belajar siswa mengikuti pembelajaran konvensional untuk materi trigonometri di kelas X.The purposes of the research are (1) to produce learning cycle-5E based on problem posing on trigonometric topic in class X, (2) to describe the effectiveness of learning cycle-5E based on problem posing in trigonometric topic in class X, (3) Compare the learning outcomes of students who take Learning Cycle 5E-based problem posing with the learning outcomes of students who take conventional learning on the topic of trigonometry in class X. The learning device development was conducted by using the Morisson model. Based on the test results, the devices obtained by the learning cycle 5E based on problem posing is a good quality, as validated by the validators and qualified: (1) the ability of teachers in managing good learning, (2) the student activity in effective learning, (3) Positive student responses, (4) learning outcome test, fulfils valid, reliable, and sensitive criteria and (5) learning completeness is achieved in a classical manner. whereas the results of descriptive statistical analysis, it is obtained that the  learning cycle 5E based on problem posing is effective material to used in teachng trigonometric. Based on inferential statistic analysis using anacova, it is concluded that the students' learning outcomes following learning cycle 5E based on problem posing are better than the students' learning outcomes following the conventional learning for trigonometric material in class X.
Literasi Statistik: Siswa SMA dalam Membaca, Menafsirkan, dan Menyimpulkan Data Hafiyusholeh, Moh.; Budayasa, I Ketut; Siswono, Tatag Yuli Eko
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 1 No 1 (2017): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami )
Publisher : Mathematics Department

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.379 KB)

Abstract

Pemahaman terhadap data adalah penting bagi semua lapisan masyarakat, termasuk siswa. Siswa harus memiliki kemampuan dalam memahami data agar mereka mampu bereaksi secara cerdas terhadap informasi kuantitatif di sekitar mereka.Tujuan dari penelitian ini adalah mendeskripsikan bagaimana siswa SMA dalam membaca, menafsirkan dan membuat simpulan dari suatu data. Untuk memperoleh gambaran tersebut, peneliti menetapkan satu siswa perempuan yang mempunyai tingkat kemampuan matematika tinggi sebagai subjek penelitian. Pengambilan data dilakukan melalui wawancara berbasis tugas yang divalidasi melalui triangulasi waktu. Hasil penelitian menunjukkan bahwa subjek perempuan yang berkemampuan matematika tinggi dalam membaca data memulai dengan memperhatikan judul grafik/diagram dan keterangan pada setiap sumbu yang diberikan, subjek menggali informasi langsung dari apa yang tertulis secara eksplisit berdasarkan grafik yang ada, memaknai dan menjelaskan titik-titik dalam grafik sebagai hubungan sumbu x terhadap sumbu y. Dalam menafsirkan dan menyimpulkan data, subjek memperhatikan pola umum dari fluktuasi data dan menggunakan tren data umum untuk memprediksi kemungkinan data yang akan datang dan menentukan nilai kenaikan atau penurunan data berdasarkan nilai rata-ratanya
PENGEMBANGAN ANGKET KEYAKINAN TERHADAP PEMECAHAN MASALAH DAN PEMBELAJARAN MATEMATIKA Muhtarom, Muhtarom; Juniati, Dwi; Siswono, Tatag Yuli Eko
JIPMat Vol 2, No 1 (2017)
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jipmat.v2i1.1481

Abstract

Keyakinan (belief) terhadap matematika mempengaruhi bagaimana seseorang “menyambut” matematika. Keyakinan juga mempengaruhi prestasi belajar. Guru memegang peran penting dalam membangun keyakinan siswa terhadap matematika. Oleh karena itu perlu dikembangkan instrumen untuk mengukur keyakinan guru atau mahasiswa calon guru. Model pengembangan yang digunakan untuk mengembangkan angket menggunakan design research tipe development study. Tahap yang dilakukan yang terdiri dari tiga fase, yaitu: investigasi awal, fase prototype, dan fase assesmen Penelitian ini menggunakan teknik analisis deskriptif kualitatif dan kuantitatif. Hasil penelitian menunjukkan instrumen angket yang dikembangkan memenuhi kriteria valid dan reliabel berdasakan hasil analisis kuantitatif. Hasil analisis kualitatif juga menunjukkan terdapat tiga jenis keyakinan dalam pemecahan masalah dan pembelajaran yang dimiliki oleh mahasiswa calon guru matematika.
Teachers’ and students’ beliefs in mathematics at State Senior High School 5 Semarang Muhtarom, Muhtarom; Juniati, Dwi; Siswono, Tatag Yuli Eko; Rahmatika, Ismi
Jurnal Riset Pendidikan Matematika Vol 5, No 1: May 2018
Publisher : Program Studi Pendidikan Matematika Program Pascasarjana Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (610.147 KB) | DOI: 10.21831/jrpm.v5i1.18734

Abstract

The aim of this research was to discover the relationship between teachers’ and students’ beliefs in mathematics. The sample consisted of two mathematics teachers, twenty eight students from 10th grade natural science 6 (X IPA 6) and twenty eight students from 10th grade natural science 10 (X IPA10) at state senior high school 5 Semarang. The data were collected from questionnaires and guided interviews on beliefs about mathematics. The research results showed that both of the mathematics teachers had platonist beliefs. It was found specifically that 4.76% of students in class X IPA 6 consistently had instrumentalist beliefs, 85.71% were consistent with their platonist beliefs, and 9.52% consistently had problem solving beliefs; while in class X IPA 10, 4.76% consistently showed instrumentalist beliefs, 80.95% were consistent with their platonist beliefs, and 14.29% consistently had problem solving beliefs. This indicates that there is a relationship between teachers’ and students’ beliefs, namely the tendency towards platonist beliefs; and also that the teacher’s beliefs influence the student’s beliefs.
STUDENTS' GESTURES IN UNDERSTANDING ALGEBRAIC CONCEPTS Dwijayanti, Ida; Budayasa, I Ketut; Siswono, Tatag Yuli Eko
Beta: Jurnal Tadris Matematika Vol 12 No 2 (2019): Beta November
Publisher : Universitas Islam Negeri (UIN) Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20414/betajtm.v12i2.307

Abstract

[English]: The purpose of this qualitative exploratory study was to analyze students? gestures in understanding algebraic expression. It involved 59 7th-grade students in Semarang city, Indonesia. Students? gestures were identified through interviews and observations, then analyzed in three stages: data condensation, data display, and drawing and verifying conclusion. Time triangulation was utilized to assure data validity. The results showed that students employed: (1) direct gestures as a representation of coefficients and variables in the form of hand movements forming the shape of objects that they recognize in the everyday environment, (2) indirect gestures as a representation of coefficients and variables in the form of hand movements as if forming the shape of objects that they recognize in the daily environment then followed by consistent and repetitive hand movements as a representation of the coefficients, (3) direct gesture representing constants in the form of hand movements forming a specific number, and (4) writing gestures and pointing gestures to strengthen the explanation given. The present study concludes that the gestures made by the students in understanding the concepts of algebraic expression consist of representation, pointing, and writing. This study yields an important description of students' gestures and types of gestures about the algebraic concept, which provide a further understanding of the topic.  Keywords: Gesture, Conceptual understanding, Algebra [Bahasa]: Penelitian kualitatif ini bertujuan untuk menganalisis gestur siswa dalam memahami bentuk aljabar. Penelitian melibatkan 59 siswa di salah satu SMP di Semarang. Data gestur siswa diidentifikasi melalui observasi dan wawancara kemudian dianalisis melalui tahapan kondensasi data, penyajian data, dan penarikan dan verifikasi simpulan. Verifikasi keabsahan data dilakukan menggunakan teknik triangulasi waktu. Hasil penelitian  menunjukkan bahwa siswa menggunakan (1) gestur langsung sebagai perwujudan pemahaman konsep koefisien dan variabel dalam bentuk gerakan tangan yang membentuk objek yang dikenali dalam lingkungan sehari-hari, (2) gestur tidak langsung sebagai representasi koefisien dan variabel dalam bentuk gerakan tangan seolah-olah membentuk objek yang dikenali dalam lingkungan sehari-hari kemudian diikuti oleh gerakan tangan yang konsisten dan berulang sebagai representasi koefisien, (3) gestur langsung yang menjadi representasi konstanta melalui gerakan tangan membentuk angka tertentu, dan (4) gestur menulis dan  menunjuk untuk memperkuat penjelasan yang diberikan. Penelitian ini menyimpulkan bahwa gestur yang dibentuk siswa dalam memahami konsep bentuk aljabar terdiri dari gestur representasi (gestur representasi langsung dan tidak langsung), gestur menunjuk, dan gestur menulis. Penelitian ini menghasilkan deskripsi penting tentang gestur dan jenis gestur siswa tentang konsep aljabar yang memberikan pemahaman lebih lanjut tentang topik tersebut. Kata kunci: Gestur, Pemahaman konsep, Aljabar  
LEVELING STUDENTS' CREATIVE THINKING IN SOLVING AND POSING MATHEMATICAL PROBLEM Siswono, Tatag Yuli Eko
Journal on Mathematics Education Vol 1, No 1 (2010)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (433.216 KB) | DOI: 10.22342/jme.1.1.794.17-40

Abstract

Many researchers assume that people are creative, but their degree of creativity is different. The notion of creative thinking level has been discussed by experts. The perspective of mathematics creative thinking refers to a combination of logical and divergent thinking which is based on intuition but has a conscious aim. The divergent thinking is focused on flexibility, fluency, and novelty in mathematical problem solving and problem posing. As students have various backgrounds and different abilities, they possess different potential in thinking patterns, imagination, fantasy and performance; therefore, students have different levels of creative thinking. A research study was conducted in order to develop a framework for students' levels of creative thinking in mathematics. This research used a qualitative approach to describe the characteristics of the levels of creative thinking. Task-based interviews were conducted to collect data with ten 8thgrade junior secondary school students. The results distinguished five levels of creative thinking, namely level 0 to level 4 with different characteristics in each level. These differences are based on fluency, flexibility, and novelty in mathematical problem solving and problem posing.
PERSPEKTIF PHYLOGENESIS DAN ONTOGENESIS DALAM PENGEMBANGAN PEMBELAJARAN MATEMATIKA MENGGUNAKAN ASPEK SEJARAH MATEMATIKA Fiangga, Shofan; Rosyidi, Abdul Haris; Siswono, Tatag Yuli Eko
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 6, No 2 (2017)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/ajpm.v6i2.1044

Abstract

History of mathematics discusses a historical aspect of mathematics concepts since its appearance and development through ages. Understanding the background of why a certain concept appears in mathematics, an innovation in teaching and learning material may be developed. The historical aspect of mathematics concept can be used as guided reinvention activities for the children to learn the concept. This idea is in line with what stated in curriculum 2013. However, to implement in curriculum 2013, there is no feasible framework that can be used to work on. One perspective that can be used in this implementation is phylogenensis and ontogenesis perspective. In this paper a discussion on how phylogenesis and ontogenesis may be used to implement the history in teaching mathematics will be presented. In addition, an example on how a history can be used as reference in learning is provided.
EXAMINING PROSPECTIVE TEACHERS’ BELIEF AND PEDAGOGICAL CONTENT KNOWLEDGE TOWARDS TEACHING PRACTICE IN MATHEMATICS CLASS: A CASE STUDY Muhtarom, Muhtarom; Juniati, Dwi; Siswono, Tatag Yuli Eko
Journal on Mathematics Education Vol 10, No 2 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (789.352 KB) | DOI: 10.22342/jme.10.2.7326.185-202

Abstract

Beliefs and pedagogical content knowledge (PCK) are two factors influencing teaching practice in the classroom. This research aims to describe the beliefs and PCK of the prospective mathematics teachers and the relationship between the two factors on the teaching practices in the mathematics classroom. Participant in this research includes a prospective teacher who has taken a micro teaching subject and has good communication skill. Data were collected through interview and video analysis on the teaching practice in the classroom. The data obtained were coded, simplified, presented, and triangulated for the credibility and concluded. The result of the research shows that the prospective teachers who hold a constructivist belief view mathematics as a dynamic knowledge which evolves and is regarded as the space of creation for humans. Their beliefs on the nature of mathematics support the belief in the teaching-learning process in mathematics classrooms. Furthermore, a good understanding of the prospective teachers have on the components of the PCK has been sufficient, which can be identified in every step of practical activities in the classroom. More elaboration on the relationship between the belief and PCK is presented in this research.