Intan Muchtadi-Alamsyah
Algebra Research Group Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,

Published : 5 Documents
Articles

Found 5 Documents
Search

Auslander Reiten Quiver of Nakayama Algebra type Dynkin Graph An Anwar, Faisal; Irawati, I.; Muchtadi-Alamsyah, Intan
Journal of Mathematical and Fundamental Sciences Vol 45, No 1 (2013)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (971.443 KB) | DOI: 10.5614/j.math.fund.sci.2013.45.1.1

Abstract

In this paper we will determine Auslander Reiten quiver of Nakayama algebra with quiver type Dynkin graph An for all natural number n ≥ 2. The AR-quiver is a visualization of module category of finite dimensional algebras. From the AR-quiver of an algebra A we may know all the isomorphism classes of indecomposable modules in mod A and the homomorphism between them. Once we get the general shape of the AR-quiver of this algebra, we will use it to compute a tilting module of this algebra.
Stability and Vulnerability of Bird Flocking Behaviour: A Mathematical Analysis Erfianto, Bayu; Muchtadi-Alamsyah, Intan
HAYATI Journal of Biosciences Vol. 26 No. 4 (2019): October 2019
Publisher : Bogor Agricultural University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.84 KB) | DOI: 10.4308/hjb.26.4.%x

Abstract

Given a large number of birds in the flock, we mathematically investigate the mechanism the birds move in a collective behavior. We assume that each bird is able to know its position and velocity of other birds within a radius of communication. Thus, to be able to fly in the flock, a bird has to adjust its position and velocity according to his neighbors. For this purpose, first of all, we analyze how the connectedness of the bird interaction network affects the cohesion of the stable bird flock. We further analyze a condition when the flock is vulnerable, which is mathematically indicated by means of the presence of an articulation point in bird communication network.
CHARACTERIZATION OF NAKAYAMA $m$-CLUSTER TILTED ALGEBRAS OF TYPE $A_n$ Faisal, Faisal; Muchtadi-Alamsyah, Intan
Journal of the Indonesian Mathematical Society Volume 22 Number 2 (October 2016)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.22.2.213.93-130

Abstract

Abstract. For any natural natural number m, the m-cluster tilted algebras are generalization of cluster tilted algebras. These algebras are defined as the endomorphism of certain objects in m-cluster category called m-cluster tilting objects. Finding such objectin the m-cluster category has become a combinatorial problem. In this article we charac-terize Nakayama m-cluster tilted algebras of type An by geometric description given byBaur and Marsh.DOI : http://dx.doi.org/10.22342/jims.22.2.213.93-130
Modul Herediter atas aljabar Lintasan Leavitt dari Graf A∞ Kariman, Delsi; Irawati, Irawati; Muchtadi-Alamsyah, Intan
Jurnal Matematika Integratif Volume 15 No 1 (April 2019)
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4.328 KB) | DOI: 10.24198/jmi.v15.n1.21027.63-68

Abstract

Misalkan E suatu graf berarah dan K lapangan.  Aljabar lintasan Leavitt LK(E) adalah K-aljabar lintasan diperluas yang berasosiasi dengan graf E modulo relasi tertentu.  Dalam tulisan ini, diselidiki sifat keherediteran modul atas aljabar lintasan Leavitt dari graf garis tak hingga A?.
Kode Siklis dari Sebuah Monomial Nopendri, Nopendri; Muchtadi-Alamsyah, Intan; Suprijanto, Djoko; Barra, Aleams
Jurnal Matematika Integratif Volume 15 No 1 (April 2019)
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (351.748 KB) | DOI: 10.24198/jmi.v15.n1.20897.9-15

Abstract

Kode siklis merupakan salah satu topik riset paling aktif dalam teori koding karena memiliki banyak aplikasi pada sistem penyimpanan data dan komunikasi. Hal ini dikarenakan kode siklis memiliki algoritma encoding dan decoding yang efisien. Dalam makalah ini, dijelaskan tentang konstruksi kode siklis dari barisan yang dibangun oleh trace dari sebuah monomial atas lapangan hingga karakteristik dua. Beberapa contoh dari kode yang diperoleh ditampilkan pada makalah ini.