Raden Venantius Hari Ginardi, Raden Venantius Hari
Institut Teknologi Sepuluh Nopember Surabaya

Published : 3 Documents

Found 3 Documents

Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments Ratnasari, Evy Kamilah; Ginardi, Raden Venantius Hari; Fatichah, Chastine
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1296.147 KB) | DOI: 10.26594/register.v3i1.575


 Penyakit noda pada daun tanaman tebu menampakkan gejala berupa lesi atau bercak. Lesi tersebut menghambat proses fotosintesis daun dan dapat mengakibatkan menurunnya produksi gula. Oleh karena itu, dalam meningkatkan kualitas produksi gula dibutuhkan diagnosa dini untuk mengambil keputusan penanganan penyakit yang cepat dan tepat, sehingga dapat meminimalisir kerusakan daun yang signifikan akibat penyebaran penyakit tersebut. Sayangnya keterbatasan keberadaan ahli penyakit tanaman tebu yang berpotensi dalam mendiagnosa penyakit noda tidak dapat mengatasi hal tersebut. Penelitian ini mengusulkan diagnosa penyakit noda tanaman tebu menggunakan metode pemrosesan citra berdasarkan fitur tekstur Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) dan LAB color moments. Metode yang diajukan terdiri dari ekstraksi ciri warna pada citra masukan yang akan menghasilkan 12 fitur warna dan ekstraksi ciri tekstur pada citra masukan yang tersegmentasi dan menghasilkan 24 fitur tekstur, kemudian gabungan fitur warna dan tekstur tersebut digunakan sebagai masukan klasifikasi k-Nearest Neighbor (kNN) untuk mengenali jenis penyakit noda pada citra daun tanaman tebu. Jenis penyakit noda terdiri dari noda cincin, noda karat, dan noda kuning yang memiliki karakteristik berbeda. Klasifikasi penyakit noda pada tanaman tebu  menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 93%.   The sugarcane spot disease attack the sugarcane with appear as spots on the leaves, so this spots prevent the vital process of photosynthesis to take place and caused sugar production losses. Early diagnosis of this spot disease can improve the quality of sugar production. The diagnosis result can be used as decision reference to control the disease fast and accurately to minimize attack severe that can caused significant damage. Unfortunately, experts who are able to identify the diseases are often unavailable. This research attempted to identify the three sugarcane spot diseases (ring spot, rust spot, and yellow spot) using Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) and LAB color moments. The SGLCM obtain 24 texture features of segmented image and color moments obtain 12 color features. This method achieved at least 93% accuracy when identifying the diseases using kNN classifier.
Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast Pusadan, Mohammad Yazdi; Buliali, Joko Lianto; Ginardi, Raden Venantius Hari
International Journal of Advances in Intelligent Informatics Vol 5, No 3 (2019): November 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar


Flight anomaly detection is used to determine the abnormal state data on the flight route. This study focused on two groups: general aviation habits (C1)and anomalies (C2). Groups C1 and C2 are obtained through similarity test with references. The methods used are: 1) normalizing the training data form, 2) forming the training segment 3) calculating the log-likelihood value and determining the maximum log-likelihood (C1) and minimum log-likelihood (C2) values, 4) determining the percentage of data based on criteria C1 and C2 by grouping SVM, KNN, and K-means and 5) Testing with log-likelihood ratio. The results achieved in each segment are Log-likelihood value in C1Latitude is -15.97 and C1Longitude is -16.97. On the other hand, Log-likelihood value in C2Latitude is -19.3 (maximum) and -20.3 (minimum), and log-likelihood value in C2Longitude is -21.2 (maximum) and -24.8 (minimum). The largest percentage value in C1 is 96%, while the largest in C2 is 10%. Thus, the highest potential anomaly data is 10%, and the smallest is 3%. Also, there are performance tests based on F-measure to get accuracy and precision.
Solution of class imbalance of k-nearest neighbor for data of new student admission selection Mutrofin, Siti; Mu'alif, Ainul; Ginardi, Raden Venantius Hari; Fatichah, Chastine
International Journal of Artificial Intelligence Research Vol 3, No 2 (2019): December
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (354.75 KB) | DOI: 10.29099/ijair.v3i2.92


The objective of this research is to correct the inconsistencies associated with the response differences by each examiner with respect to the assessment of each hafiz candidate. To carry out this research, 259 students were selected within a week using 4testers. However, the examiners are also tasked with another essential mandate which must be immediately fulfilled asides testing candidates for hafiz. In order to overcome this problem, the Educational Data Mining (EDM) system is applied during classification. The problems associated with the use of this technique however, is the limited number of attributes and the imbalance data class. This study was proposed to apply the kNN (k-Nearest Neighbor) technique. The results obtained indicates that kNN can provide recommendations to testers who are students and it is suitable for the solving the problem associated with class imbalance as indicated by the application of Shuffled and Stratified sampling techniques which has values of accuracy, precision, recall and AUC > 0.8%.