p-Index From 2015 - 2020
0.408
P-Index
This Author published in this journals
All Journal Jurnal Fourier
Yudi Ari Adi, Yudi Ari
Unknown Affiliation

Published : 4 Documents
Articles

Found 4 Documents
Search

Penyelesaian Persamaan Telegraph Dan Simulasinya Surur, Agus Miftakus; Adi, Yudi Ari; Sugiyanto, Mr.
Jurnal Fourier Vol 2, No 1 (2013)
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.114 KB)

Abstract

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Greens function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Greens function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Greens function in equation which deal with the wave equation, that is applied in equation Telegraph.  Solution started with searching public form from Greens function, hereinafter look for the solving of wave equation in Greens function. Application from the wave equation used to look for the solving of equation Telegraph.  Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
Penyelesaian Persamaan Telegraph Dan Simulasinya Surur, Agus Miftakus; Adi, Yudi Ari; Sugiyanto, Sugiyanto
Jurnal Fourier Vol 2 No 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.114 KB) | DOI: 10.14421/fourier.2013.21.33-43

Abstract

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Green's function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Green's function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Green's function in equation which deal with the wave equation, that is applied in equation Telegraph.  Solution started with searching public form from Green's function, hereinafter look for the solving of wave equation in Green's function. Application from the wave equation used to look for the solving of equation Telegraph.  Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
MODELING AND PREDICTION OF COVID-19 WITH A LARGE SCALE SOCIAL DISTANCING Adi, Yudi Ari; Ndii, Meksianis Z.
Jurnal Fourier Vol 9 No 1 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2020.91.1-9

Abstract

Coronavirus 2019 (COVID-19), yang kasusnya dimulai di Cina, dalam kurun waktu dua bulan telah menyebar dengan cepat ke lebih dari 114 negara dan territorial. Pemahaman tentang dinamika penularan Covid-19 sangat penting untuk menentukan kebijakan dan strategi dalam pengobatan dan pengendalian penyebaran penyakit ini. Dalam makalah ini, disusun model matematika yang menggambarkan dinamika penularan penyakit menggunakan model matematika deterministik dengan menggunakan data penyebaran COVID-19 di Jakarta, Indonesia dari 3 Maret 2020, hingga 10 April 2020. Model berbentuk Sistem persamaan diferensial yang selanjutnya dilakukan analisis matematika dan simulasi numerik. Hasil simulasi menunjukkan bahwa tanpa intervensi, angka reproduksi penyebaran Covid-19 di Provisi Jakarta sekitar 1,658 dan jika Pembatasan Sosial Berskala Besar (PSBB) diimplementasikan, maka angka reproduksinya turun menjadi 1,40. Lebih lanjut, epidemi diperkirakan akan berakhir sekitar akhir November 2020 dengan kasus puncak pada pertengahan Juni 2020 dengan jumlah orang yang dikonfirmasi positif terinfeksi mencapai sekitar 9.000 jiwa. Dari hasil pemodelan ini, disimpulkan bahwa untuk meminimalkan penularan penyakit, perlu menerapkan kebijakan dan kontrol yang lebih ketat. [Coronavirus disease 2019 (COVID-19) which was initiated in China, has spread rapidly in more than 114 countries and territories over the last two months. An understanding of the dynamics of Covid-19 transmission is very important to determine policies and strategies in the treatment and control of the spread of this disease. In this paper, we formulated a mathematical model that describes the transmission dynamics of the disease using a deterministic mathematical model and the model is validated against data from Jakarta, Indonesia from March 3, 2020, to April 10, 2020. Mathematical analysis and numerical simulations are presented. We found that without intervention, the reproduction number is around 1.658 and the reproduction number declines to 1.40 if large scale social distancing is implemented. Furthermore, the end time of epidemic is predicted to be around the end of November 2020 with peak cases around mid-June 2020 and the number of confirmed infected individuals is around 9,000. To minimize the transmission of the diseases, it is necessary to enforce strict policies and controls.]
MODELING AND PREDICTION OF COVID-19 WITH A LARGE SCALE SOCIAL DISTANCING Adi, Yudi Ari; Ndii, Meksianis Z.
Jurnal Fourier Vol 9 No 1 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2020.91.1-9

Abstract

Coronavirus 2019 (COVID-19), yang kasusnya dimulai di Cina, dalam kurun waktu dua bulan telah menyebar dengan cepat ke lebih dari 114 negara dan territorial. Pemahaman tentang dinamika penularan Covid-19 sangat penting untuk menentukan kebijakan dan strategi dalam pengobatan dan pengendalian penyebaran penyakit ini. Dalam makalah ini, disusun model matematika yang menggambarkan dinamika penularan penyakit menggunakan model matematika deterministik dengan menggunakan data penyebaran COVID-19 di Jakarta, Indonesia dari 3 Maret 2020, hingga 10 April 2020. Model berbentuk Sistem persamaan diferensial yang selanjutnya dilakukan analisis matematika dan simulasi numerik. Hasil simulasi menunjukkan bahwa tanpa intervensi, angka reproduksi penyebaran Covid-19 di Provisi Jakarta sekitar 1,658 dan jika Pembatasan Sosial Berskala Besar (PSBB) diimplementasikan, maka angka reproduksinya turun menjadi 1,40. Lebih lanjut, epidemi diperkirakan akan berakhir sekitar akhir November 2020 dengan kasus puncak pada pertengahan Juni 2020 dengan jumlah orang yang dikonfirmasi positif terinfeksi mencapai sekitar 9.000 jiwa. Dari hasil pemodelan ini, disimpulkan bahwa untuk meminimalkan penularan penyakit, perlu menerapkan kebijakan dan kontrol yang lebih ketat. [Coronavirus disease 2019 (COVID-19) which was initiated in China, has spread rapidly in more than 114 countries and territories over the last two months. An understanding of the dynamics of Covid-19 transmission is very important to determine policies and strategies in the treatment and control of the spread of this disease. In this paper, we formulated a mathematical model that describes the transmission dynamics of the disease using a deterministic mathematical model and the model is validated against data from Jakarta, Indonesia from March 3, 2020, to April 10, 2020. Mathematical analysis and numerical simulations are presented. We found that without intervention, the reproduction number is around 1.658 and the reproduction number declines to 1.40 if large scale social distancing is implemented. Furthermore, the end time of epidemic is predicted to be around the end of November 2020 with peak cases around mid-June 2020 and the number of confirmed infected individuals is around 9,000. To minimize the transmission of the diseases, it is necessary to enforce strict policies and controls.]