Sisworo Sisworo, Sisworo
Unknown Affiliation

Published : 23 Documents
Articles

Found 23 Documents
Search

GENERALIZATION STRATEGY OF LINEAR PATTERNS FROM FIELD-DEPENDENT COGNITIVE STYLE Setiawan, Yayan Eryk; Purwanto, Purwanto; Parta, I Nengah; Sisworo, Sisworo
Journal on Mathematics Education Vol 11, No 1 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.11.1.9134.77-94

Abstract

Linear pattern is the primary material in learning number patterns in junior high schools, but there are still many students who fail to generalize the linear pattern. The students? failure in generalizing the pattern occurred when the students ended to view the problems globally without breaking them into the constructors? components such as the experience of field-dependent type students. For this reason, this study was carried out to explore the thinking process of students who fail and investigate the thinking processes of students who succeed in generalizing linear patterns. The results of this study provide an effective learning strategy solution for field-dependent students in generalizing linear patterns. This study employed a qualitative approach with a case study design to junior high school students. The results indicated that students in the field-dependent cognitive style looked at pattern questions represented in the form of geometric images globally without looking at the structure of the image. Two strategies for generalizing linear patterns used by field-dependent students were examined, namely recursive and different strategies.
WHY DID THE STUDENTS MAKE MISTAKES IN SOLVING DIRECT AND INVERSE PROPORTION PROBLEM? Irfan, Muhammad; Nusantara, Toto; Subanji, Subanji; Sisworo, Sisworo
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 1 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this study is to describe the student's difficulties in solving direct and inverse proportion problem. This research uses explorative qualitative research type. The subject of this research is the second semester student of Mathematics Education Study Program in East Java. Subjects were selected based on purposive sampling. The findings of this study are 86% of students are wrong in solving the problem of inverse proportion, 28% of students are wrong in solving direct proportion problem, and 91% of students are wrong in solving both problems in a single question. Then, the students who made mistakes in solving the problem were chosen purposively for interview. The finding in this research is the student(1) do not understand the use of variables, (2) do not understand the use of formulas, (3) do not understand the key phrases on the problem, (4) Difference in ratio, fractional, and division, (5) do not understand the problem, (6) do not understand simplification of division, and (7) do not interpret proportion relation correctly.
SERIES OF ARGUMENTS ON PROCESSES OF CRITIQUES TO MATHEMATICAL PROBLEMS Nugroho, Bayu; Nusantara, Toto; As'ari, Abdur Rahman; Sisworo, Sisworo
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 1 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study was initially based on the researcher?s interest in a case found in students as they responded mathematical problems provided in the form of critiques to a problem. The study aimed to explore the students? arguments to describe the students? thinking processes while they are giving critiques to a mathematical problem. The study was qualitative research in a case study involving one student as a subject of research.  The finding showed that the students used 4 series of arguments as the main reason to give critiques to the given problem. The critiques were delivered due to several factors consisting of; (1) the students? inability to discover appropriate strategies to deal with the given problems; (2) the personal experiences kept in a Long Term Memory, and (3) the fallacy on reasoning.
KONEKSI MATEMATIS SISWA DALAM MENYELESAIKAN MASALAH TIDAK LENGKAP DALAM DISKUSI KELOMPOK Nurudini, Nadia; Susiswo, Susiswo; Sisworo, Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12838

Abstract

Abstract: The purpose of this study is to describe students' mathematical connection ability on cube material in solving incomplete problems in group discussion. The sample in this study were 3 groups that has high, medium, and low mathematical abilities. The results of this study was found that the students with high ability were able to understand all mathematical connection indicators, which were finding the connection between mathematical topics, finding the connection of mathematics to other knowledges, and finding the connection of mathematics to dayly life. The students with medium ability were able to understand the first and second indicators. The students with low ability were only able to understand one indicator which was finding the connection between mathematical topics.Abstrak: Tujuan dari penelitian ini adalah untuk mendeskripsikan kemampuan koneksi matematis siswa pada materi bangun ruang kubus dalam menyelesaikan masalah tidak lengkap dalam diskusi kelompok. Sampel dalam penelitian ini diambil tiga kelompok siswa yang memiliki kemampuan matematis tinggi, sedang, dan rendah. Dari hasil penelitian diperoleh bahwa siswa berkemampuan tinggi dapat menguasai ketiga indikator kemampuan koneksi matematis, yaitu koneksi matematis antar topik matematika, koneksi matematis dengan mata pelajaran lain, dan koneksi matematis dengan kehidupan sehari-hari. Siswa berkemampuan sedang dapat menguasai indikator I dan II. Siswa berkemampuan rendah hanya menguasai satu indicator, yaitu koneksi antar topik matematika.
INVESTIGATING PRE-SERVICE MATHEMATICS TEACHER CRITICAL THINKING ABILITY Basri, Hasan; Purwanto, Purwanto; As'ari, Abdur Rahman; Sisworo, Sisworo
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 2 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims at investigate the critical thinking ability of pre-service mathematics teacher at Madura University. The instrument used in this research was using the Watson-Glaser Test with the mathematics content. There was 48 pre-service teachers who participated as the subjects in this research. This research used statistic descriptive method to identify the profile of critical thinking ability of pre-service mathematics teacher. The scores from each sub-skill and the total score were calculated to identify the profile of critical thinking ability of pre-service mathematics teacher. Based on the data analysis, it was found out that the critical thinking ability of pre-service mathematics teacher was in the intermediate level, yet deduction sub-skill became the best pre-service mathematics teacher?s critical thinking ability and recognition of assumption skill became the lowest pre-service mathematics teacher?s critical thinking ability.
DESKRIPSI KESALAHAN SISWA DAN SCAFFOLDINGNYA DALAM MENYEDERHANAKAN PECAHAN BENTUK ALJABAR Maharani, Indah Puspitasari; Sisworo, Sisworo; Permadi, Hendro
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 12: DESEMBER 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i12.13089

Abstract

Abstract: The research objectives are (1) describing the mistakes made by students in simplifying fractions of algebraic forms and (2) describing the scaffolding given to overcome student errors. The subjects in this study were UM Lab High School students in the XI IPS class who made mistakes in completing the test. The research subjects studied were 2 students categorized in the low ability category. This type of research is descriptive qualitative. Data obtained through tests and interviews. The results showed that (1) the mistakes made by students in simplifying the algebraic fractions consisted of errors in denominator equations, errors in algebraic operations, errors in algebraic factoring and errors in simplified algebraic fractions and (2) scaffolding given based on errors in point one is explaining, reviewing and restructuring and developing conceptual thinking.Abstrak: Tujuan penelitian adalah (1) mendeskripsikan kesalahan yang dilakukan oleh siswa dalam menyederhanakan pecahan bentuk aljabar dan (2) mendeskripsikan scaffolding yang diberikan untuk mengatasi kesalahan siswa. Subjek dalam penelitian ini adalah siswa SMA Lab UM kelas XI IPS yang melakukan kesalahan dalam menyelesaikan tes. Subjek penelitian yang diteliti sebanyak 2 siswa yang dikategorikan dalam kategori kemampuan rendah. Jenis penelitian ini adalah kualitatif deskriptif. Data yang diperoleh melalui tes dan wawancara. Hasil penelitian menunjukan bahwa (1) kesalahan yang dilakukan siswa dalam menyederhanakan pecahan bentuk aljabar terdiri dari kesalahan pada penyamaan penyebut, kesalahan pada operasi aljabar, kesalahan pada pemfaktoran aljabar dan kesalahan pada penyederhanaan pecahan aljabar dan (2) scaffolding yang diberikan berdasarkan kesalahan pada poin satu adalah explaining, reviewing dan restructuring serta developing conceptual thinking.
BEBAN KOGNITIF SISWA DALAM PEMBELAJARAN MATERI GEOMETRI Yohanes, Barep; Subanji, Subanji; Sisworo, Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.2, Februari 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.06 KB) | DOI: 10.17977/jp.v1i2.6121

Abstract

The purpose of the study describes the rises of cognitive load of students in learning geometry. The study used a qualitative approach. The results showed that the intrinsic cognitive load is derived from the number of elements of interactivity of position, distance, and angles between points, lines, and areas, congruency of triangles, algebraic and fractional operations. Intrinsic cognitive load comes from the complexity of the learning material that constitutes visualizing, performing algebraic operations,  determining congruency triangle, and the angle of difficulties. Extraneous cognitive load that arise due to the way the teacher in explaining too fast and disturbance of some of friends who are crowded / noisy. Germane cognitive load that arises due to the use of Cabri 3D in learning and giving variable exampleTujuan penelitian mendeskripsikan munculnya beban kognitif siswa dalam pembelajaran materi geometri. Penelitian menggunakan pendekatan kualitatif. Hasil penelitian menunjukkan bahwa beban kognitif intrinsic disebabkan oleh jumlah elemen interaktivitas yaitu kedudukan, jarak, dan sudut antara titik, garis, dan bidang, kesebangunan segitiga, operasi aljabar, dan operasi pecahan. Beban kognitif intrinsic disebabkan oleh kompleksitas materi, yaitu kesulitan membayangkan, kesulitan melakukan operasi aljabar, kesulitan menentukan kesebangunan segitiga, dan kesulitan menentukan besar sudut. Beban kognitif extraneous disebabkan oleh cara guru dalam menjelaskan terlalu cepat dan gangguan dari sebagian teman yang ramai/gaduh. Beban kognitif germane disebabkan oleh penggunaan Cabri 3D dalam pembelajaran dan pemberian latihan soal. 
Penerapan Model Pembelajaran Matematika Melalui Pemecahan Masalah untuk Meningkatkan Penalaran Matematis Siswa Kelas X-A SMA Al-Muslimun Maimunah, Maimunah; Purwanto, Purwanto; Sa’dijah, Cholis; Sisworo, Sisworo
JURNAL REVIEW PEMBELAJARAN MATEMATIKA Vol 1 No 1 (2016)
Publisher : UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15642/jrpm.2016.1.1.17-30

Abstract

The purpose of this study to improve students mathematical reasoning with the application of teaching mathematics through problem solving. This models consist of four fase, that is: giving problems, investigation, presentation results, and evaluation results. Method of research is quasi experimental is implemented in class X-A SMA Al Muslimun Pelalawan Riau. Subject of this study were 19 students who divided into groups of 4-5 students with the capability of high, medium, and low. The instrument used was a test and observation. In the pretest result there were 10 students with sufficient reasoning and good criteria. While on the posttest there were 19 students with the criterion of mathematical reasoning is good. No students obtains criterion of mathematical reasoning is very good in two test.
PROSES METAKOGNISI SISWA DALAM PEMECAHAN MASALAH ALJABAR BERDASARKAN TAKSONOMI SOLO Tampi, Wasti; Subanji, Subanji; Sisworo, Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.11, Nopember 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (604.365 KB) | DOI: 10.17977/jp.v1i11.7962

Abstract

This study describes the metacognition process of students in problem solving of algebra based on the SOLO taxonomy. This study used a qualitative approach with descriptive research. The results of this study suggest that the metacognition process of students that occurs in problems solving of algebra at the levels of unistructural, multistructural, relational and extended abstract includes the process: metacognitive awareness, metacognitive evaluating, and metacognitive regulating.Penelitian ini mendeskripsikan proses metakognisi siswa dalam pemecahan masalah aljabar berdasarkan taksonomi SOLO. Penelitian ini menggunakan pendekatan kualitatif dengan jenis penelitian deskriptif. Hasil penelitian menunjukkan bahwa proses metakognisi siswa yang terjadi dalam pemecahan masalah terkait dengan aljabar pada level unistruktural, multistruktural, relasional, dan extended abstract mencakup proses metacognitive awareness, metacognitive evaluating, dan metacognitive regulating.  
PENGEMBANGAN PERANGKAT PEMBELAJARAN BERBASIS PROBLEM SOLVING POLYA UNTUK MENINGKATKAN KEMAMPUAN PENALARAN MATEMATIS SISWA MATERI PELUANG KELAS XI SMA Safrida, Lela Nur; As’ari, Abdur Rahman; Sisworo, Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.4, April 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.764 KB) | DOI: 10.17977/jp.v1i4.6201

Abstract

Reasoning begins to be prominent in mathematics curricula around the world and is regarded as main effort to reform the mathematics learning. Reasoning and mathematics is an integral that inseparable because mathematics materials are understood through reasoning. Improving the students’ mathematical reasoning ability can be done by providing non routine tasks. The learning method that can accommodate students’ thinking process and reasoning is Polya’s problem solving. The purpose of this research and development is to describe the process and results of the learning device development based on Polya’s problem solving for students of class XI SMP on permutations and combinations materials are valid, practical, and effective that support increasing students mathematical reasoning ability.Penalaran mulai ditonjolkan dalam kurikulum matematika di seluruh dunia dan dipandang sebagai upaya utama untuk mereformasi pembelajaran matematika. Penalaran dan matematika merupakan satu kesatuan yang tidak dapat dipisahkan karena materi matematika dipahami melalui penalaran. Upaya peningkatan kemampuan penalaran matematis siswa dapat dilakukan dengan memberikan tugas yang tidak rutin. Metode pembelajaran yang mampu mengakomodasi proses berfikir dan bernalar siswa yaitu problem solving Polya. Tujuan penelitian dan pengembangan ini adalah mendeskripsikan proses dan hasil pengembangan perangkat berbasis problem solving Polya untuk siswa kelas XI pada materi permutasi dan kombinasi yang valid, praktis, dan efektif dalam meningkatkan kemampuan penalaran matematis siswa.