Articles

Found 19 Documents
Search

REPRESENTATION TRANSLATION ANALYSIS OF JUNIOR HIGH SCHOOL STUDENTS IN SOLVING MATHEMATICS PROBLEMS Swastika, Galuh Tyasing; Nusantara, Toto; Subanji, Subanji; Irawati, Santi; As?ari, Abdur Rahman; Irawan, Edy Bambang
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 2 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims at analyzing the representation translation of Junior High School students in solving mathematical questions related to algebra. This research used descriptive qualitative approach. The focus of representation translation used in this research was the external representation which was a verbal translation into diagram, verbal into symbolic, symbolic into diagram, diagram into symbolic, and diagram into verbal. Based on the analysis of research findings, it shows that representation translation of students from verbal, symbolic, and diagram into verbal and diagram was not really mastered by the students. Meanwhile, the representation translation into symbolic was frequently used by the students although they were expected to do other translation rather than symbolic.
GEOMETRIC THINKING LEVEL OF VOCATIONAL HIGH SCHOOL BASED ON VAN HIELE’S THEORY VIEWED FROM GENDER AND MATHEMATICAL ABILITY Nugroho, Eddy; Abadyo, Abadyo; Irawati, Santi
Jurnal Pendidikan Sains Vol 7, No 2: June 2019
Publisher : Pascasarjana Universitas Negeri Malang (UM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1097.733 KB) | DOI: 10.17977/jps.v7i2.12573

Abstract

Abstract: The purpose of this study is to describe the level of geometrical thinking of Vocational High School students based on Van Hielle's theory in terms of gender differences. This study used a qualitative approach involving six students of Vocational High School as research subjects consisting of three male students and three female students with different mathematical abilities. The results of this study state that there is no striking difference between the level of geometrical thinking of male and female students who are the subject of research, i.e. all are at the level of thinking one (analysis). Likewise, when viewed from different mathematical abilities, it turns out to be apparent at the level of thinking one, except for one student in the moderate mathematics ability degree who is at the level of zero thinking (visual) because this subject has a low geometry thinking ability. The ideal level of thinking for vocational high school students, the level of thinking two (Abstraction), is not reached. In addition, the lower the level of mathematical ability, the less the indicator is satisfied at the same level of thinking.Key Words: geometrical thinking ability, Van Hiele's theory, gender differenceAbstrak: Tujuan penelitian ini untuk mendeskripsikan tingkat berpikir geometri siswa Sekolah Menengah Kejuruan berdasarkan teori Van Hielle ditinjau dari perbedaan jenis kelamin. Penelitian ini menggunakan pendekatan kualitatif dengan melibatkan enam siswa Sekolah Menengah Kejuruan sebagai subjek penelitian yang terdiri atas tiga siswa putra dan tiga siswa putri dengan kemampuan matematika berbeda. Hasil dari penelitian ini menyatakan bahwa tidak ada perbedaan yang mencolok antara tingkat berpikir geometri siswa putra dan putri yang menjadi subjek penelitian, yaitu semua berada pada tingkat berpikir satu (analisis). Demikian juga jika ditinjau dari kemampuan matematikanya berbeda ternyata semua pada tingkat berpikir satu, kecuali pada seorang siswa kelompok kemampuan matematika sedang yang berada pada tingkat berpikir nol (visual) karena subjek ini memiliki kemampuan berpikir geometri rendah. Tingkat berpikir ideal untuk siswa seusia Sekolah Menengah Kejuruan, yaitu tingkat berpikir dua (Abstraksi) tidak tercapai dan semakin rendah tingkat kemampuan matematikanya semakin berkurang indikator yang terpenuhi pada tingkat berpikir yang sama.Kata kunci: tingkat berpikir geometri, teori Van Hiele, perbedaan jenis kelamin
PENALARAN INDUKTIF SISWA SMA DALAM MENYELESAIKAN MASALAH TRANSFORMASI GEOMETRI Evidiasari, Serli; Subanji, Subanji; Irawati, Santi
Jurnal Kajian Pembelajaran Matematika Vol 3, No 2 (2019): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1182.133 KB)

Abstract

This study describes the inductive reasoning  of high school students in solving geometry transformation problems.The steps of inductive reasoning in mathematics namely: (1) discussing pattern that occur, (2) making guesses about general patterns that might apply, (3) making generalizations, (4) proving generalizations deductively. The assesment used in this study is descriptive qualitative. The data source is the result of a geometry transformation test involving 35 students grouped by ability are high, intermediate and low. Then select 3 students who represent each group. The results of this study are high ability students can perform all streps of inductive reasoning and the answer given are appropriate, capable students are able to take all the steps but  still make some fault in generalizaton step, low ability student can analyze data only and  can not interpret mathematical symbols.
ANALISIS BERPIKIR KREATIF SISWA BERKEMAMPUAN MATEMATIKA RENDAH DALAM MENYELESAIKAN ILL-STRUCTURED PROBLEM Al - Ghofiqi, Maulana; Irawati, Santi; Rahardi, Rustanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12883

Abstract

Abstract: The purpose of this study was to find out in detail the creative thinking of students with low mathematical abilities in solving ill-structured problems. This type of research is a case study, tconducted at SMPN 4 Waru (State Junior High School 4 Waru), Sidoarjo. 16 Students complete the ill-structured problem test, then subjects are chosen who have a level of creative thinking in the creative category and have low mathematical abilities. The results of the study showed students fulfilled the fluency aspect based on students' ability to provide at least two correct answers and were able to explain it. Flexibility aspects are fulfilled based on students' abilities in each answer written using different ideas. While the novelty aspect is not fulfilled because students do not give any unusual answers.Abstrak: Tujuan penelitian ini adalah untuk menganalisis berpikir kreatif siswa berkemampuan matematika rendah dalam menyelesaikan ill-structured problem. Jenis penelitian ini yaitu studi kasus, dilaksanakan di SMPN 4 Waru, Sidoarjo. 16 Siswa menyelesaikan tes ill-structured problem, selanjutnya dipilih subjek yang mempunyai level berpikir kreatif dalam kategori kreatif dan mempunyai kemampuan matematika rendah. Hasil penelitian menunjukkan siswa memenuhi aspek fluency berdasarkan kemampuan siswa dalam memberikan minimal dua jawaban benar serta mampu menjelaskannya. Aspek flexibility terpenuhi berdasarkan kemampuan siswa pada setiap jawaban yang dituliskan menggunakan ide yang berbeda, sedangkan aspek novelty tidak terpenuhi karena siswa tidak memberikan satu pun jawaban tidak biasa.
Using APOS Theory Framework: Why Did Students Unable To Construct a Formal Proof? Syamsuri, Syamsuri; Purwanto, Purwanto; Subanji, Subanji; Irawati, Santi
International Journal on Emerging Mathematics Education IJEME, Vol. 1 No. 2, September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (327.094 KB) | DOI: 10.12928/ijeme.v1i2.5659

Abstract

Mathematical thinking is necessary in mathematics learning especially in college level. One of activities in undergraduate mathematics learning is proving. This article describes students’ thinking process who unable to construct mathematical formal proof. The description uses APOS Theory to explore students’ mental mechanism and students’ mental structure while they do proving. This research is qualitative research that conducted on students majored in mathematics education in public university in Banten province, Indonesia. Data was obtained through asking students to solve proving-task using think-aloud and then following by interview based task. Results show that the students could not construct a formal proof because they unable to appear encapsulation process. They merely enable to think interiorization and coordination. Based on the results, some suitable learning activities should designed to support the construction of these mental mechanism.
STUDENT MATHEMATICAL REPRESENTATION ABILITY WITH REFLECTIVE COGNITIVE STYLE IN SOLVING GEOMETRIC PROBLEMS Rahmah, Fitratur; Muhsetyo, Gatot; Irawati, Santi
Jurnal Pendidikan Sains Vol 7, No 4: December 2019
Publisher : Pascasarjana Universitas Negeri Malang (UM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.884 KB) | DOI: 10.17977/jps.v7i4.12892

Abstract

Abstract: This research aims to describe the mathematical representation ability of students with reflective cognitive style in solving geometric  problems. The subjects of this study were two students whose reflective cognitive style were selected based on the results of the MFFT test. The research method used was descriptive research with a qualitative approach. The ability of mathematical representation was described based on three standards of mathematical representation ability, namely; (1) creating and using representations to organize, record, and communicate mathematical ideas, (2) choosing, using and translating between representations to solve problems, (3) using representations to create models and interpret mathematical, physical, and social phenomena. The results showed that subjects with reflective cognitive style can use mathematical representation capabilities well from various types of representations, namely visual images, verbal written texts, and mathematical expressions.Key Words: mathematical representation ability, reflective cognitive style, geometric problemAbstrak: Riset ini bertujuan untuk mendeskripsikan kemampuan representasi matematis siswa bergaya kognitif reflektif dalam menyelesaikan masalah bangun datar. Subjek penelitian ini adalah dua siswa yang bergaya kognitif reflektif yang dipilih berdasar hasil tes MFFT. Metode penelitian yang digunakan adalah penelitian deskriptif dengan pendekatan kualitatif. Kemampuan representasi matematis dideskripsikan berdasar tiga standar kemampuan representasi matematis, yaitu; (1) membuat dan menggunakan representasi untuk mengorganisasikan, mencatat, dan mengkomunikasikan ide-ide matematika, (2) memilih, menggunakan dan menerjemahkan antar representasi untuk menyelesaikan masalah, (3) menggunakan representasi untuk membuat model dan menginterpretasi fenomena matematis, fisik, dan sosial. Hasil penelitian menunjukkan bahwa subjek dengan gaya kognitif reflektif dapat menggunakan kemampuan representasi matematis dengan baik dari berbagai jenis representasi, yaitu visual gambar, verbal teks tertulis, dan ekspresi matematis.Kata kunci: kemampuan representasi matematis, gaya kognitif reflektif, masalah geometris
PEMAHAMAN KONSEP FUNGSI INVERS SISWA MELALUI PEMBELAJARAN KOOPERATIF TIPE JIGSAW Aulia, Al Aini; Parta, I Nengah; Irawati, Santi
Jurnal Kajian Pembelajaran Matematika Vol 1, No 2 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (545.714 KB)

Abstract

Abstract : Mathematics is a branch of science that play a pivotal role in human life . In the process of learning mathematics, many aspects must be considered so that the goal of learning can be achieved.  Learning paradigm that just makes students memorize many do not understand mathematical concepts. While understanding the concept is a very important factor in the learning of mathematics and basic things that should be owned by the students. Students who have a good understanding of the concepts that will have an impact on its ability to resolve problems and tasks given in the study of mathematics, this is indicated by the learning outcomes in the form of test scores. The success of achieving standards that have been defined. To achieve this, there are various strategies that can be used, one strategy is through cooperative learning of Jigsaw. Jigsaw type of cooperative learning characterized by spesialias assignment (team of experts). The study describes the students' understanding on the concept of inverse function through cooperative learning jigsaw. This research is a classroom action research using a qualitative approach, the instrument used (1) a test sheet, (2) observation sheets teacher activity and student activities, and (3) sheet autorefleksi. Based on the research, test data that 90, 63% of students to retrieve a value of more than or equal to 75 in accordance with the chief engineer, the data of teacher activity observation 98% category very well and observation data of student activity 90% very good category, as well as data auto reflection students feel happy with the model of learning is done. So meet the success criteria of the study.
PENERAPAN REALISTIC MATHEMATICS EDUCATION MENINGKATKAN KEMAMPUAN REPRESENTASI MATEMATIS SISWA Rasyid, Anwar Nur; Irawati, Santi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 2, No 12: Desember 2017
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.237 KB) | DOI: 10.17977/jptpp.v2i12.10287

Abstract

This article discusses the results of classroom action research conducted over two cycles. This study describes the implementation of learning activities by applying realistic mathematics education to improve students mathematical representation in class VII SMP comparative material. The action steps of math learning with the application of RME are done using problems based on student experience, soliciting student ideas in solving problems, discussing student ideas in groups, comparing group work with other groups, and looking for relevance with other materials in solving more complex problems. The results showed that students mathematical representation ability increased after the second cycle action process.Artikel ini membahas hasil penelitian tindakan kelas yang dilakukan selama dua siklus. Penelitian ini mendeskripsikan pelaksanaan kegiatan pembelajaran dengan melakukan penerapan realistic mathematics education untuk meningkatkan kemampuan representasi matematis siswa pada materi perbandingan kelas VII SMP. Langkah-langkah tindakan pembelajaran matematika dengan penerapan RME dilakukan dengan menggunakan masalah berdasarkan pengalaman siswa, meminta gagasan siswa dalam menyelesaikan masalah, mendiskusikan gagasan siswa secara berkelompok, membandingkan hasil kerja kelompok dengan kelompok lain, dan mencari keterkaitan dengan materi lainnya dalam menyelesaikan masalah yang lebih kompleks. Hasil penelitian menunjukkan kemampuan representasi matematis siswa meningkat setelah proses tindakan siklus II.
BERPIKIR MATEMATIS KOMEDIAN DALAM MENGONSTRUKSI BAHAN KOMEDI: STUDI KASUS PADA STAND UP COMEDY INDONESIA Arsyad, Abdurrahim; Subanji, Subanji; Irawati, Santi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.1, Januari 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (747.889 KB) | DOI: 10.17977/jp.v1i1.6745

Abstract

Mathematical thinking has been studied by many researchers in different contexts. Lesh & English (2005) conduct a study about the connection between the someone’s success and his/her mathematical thinking ability. Shmakov & Hannula (2010) study about the creative thinking of students based on the fun mathematics teaching process, Young (2013) uses improv comedy to help the learning activities in class, and the finding of Nicewonder (2001) shows that introducing comedy during mathematics class in any given level could help students understanding the material and also could make mathematics become more fun. Basically, comedy uses the pattern of setup – punchline formula which offers expectation and gives unexpected surprise. In this matter, the thinking process known as assimilation – accomodation creates the condition equilibrium and disequilibrium. Furthermore, to analyze the mathematical thinking happens, the researcher conducts a research on Stand Up Comedy Indonesia. In short, mathematical thinking used by the comedians is an implicational logical pattern. A condition of “if” is as the setup while a condition of “then” is as the punchline. Different techniques of punchline used by different comedians are based on their stage persona which covers language, background, and the sensitivity of comedy.Berpikir matematis telah dikaji oleh banyak peneliti dengan konteks yang berbeda-beda. Lesh & English (2005) melakukan penelitian tentang hubungan kesuksesan seseorang terhadap kemampuan berpikir matematis, Shmakov & Hannula (2010) meneliti tentang kreativitas berpikir siswa dari pembelajaran matematika yang menyenangkan, Young (2013) menggunakan komedi improv untuk membantu kegiatan belajar mengajar, dan penelitian dari Nicewonder (2001) mengungkapkan bahwa mengenalkan komedi di kelas matematika pada jenjang mana pun dapat membantu siswa untuk mengerti dan membuat matematika menjadi menyenangkan. Pada dasarnya komedi menggunakan pola setup – punchline, menawarkan harapan dan memberikan kejutan. Hal ini di dalam proses berpikir dikenal dengan proses asimilasi – akomodasi, yang menciptakan kondisi equilibrium dan disequilibrium. Selanjutnya, untuk mengkaji proses berpikir matematis yang terjadi, dilakukan penelitian terhadap Stand Up Comedy Indonesia. Secara singkat, berpikir matematis yang digunakan oleh komedian adalah pola logika implikasi. Kondisi “jika” sebagai setup, dan kondisi “maka” sebagai punchline. Teknik punchline yang berbeda digunakan oleh setiap komedian sesuai dengan persona panggung yang meliputi gaya bahasa, latar belakang, dan sensitivitas komedi.
Kemampuan Pemecahan Masalah Kontekstual Siswa SMA pada Materi Barisan dan Deret Jayanti, Meylia Dwi; Irawan, Edy Bambang; Irawati, Santi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 5: MEI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.979 KB) | DOI: 10.17977/jptpp.v3i5.11092

Abstract

Abstract: This article was a study that aims to describe the contextual problem solving skills of senior high school students. We used problem solving indicator based on Polya. The results of this study indicated that on stage of understanding the problem, 8% of all students could understand every word of the problem but some students were wrong in writing what was known and asked from the problem. At the stage of planning the strategies of solving problems, 43% of all students could construct the solving plan for the question given. At the stage of implementing a plan, 33% of all students could finish all steps chosen to solve the problems systematically. In the last stage, i.e: checking the answers obtained, 16% of all students were able to check the answers back but some students were not able enough to check back the answers obtained.Abstrak: Artikel ini merupakan suatu kajian yang bertujuan untuk mendeskripsikan kemampuan pemecahan masalah kontekstual siswa SMA. Analisis data dalam kajian ini menggunakan indikator kemampuan pemecahan masalah Polya. Hasil kajian menunjukkan pada tahap memahami masalah sebesar 8% siswa dapat memahami setiap kata pada soal tetapi beberapa siswa salah dalam menuliskan apa yang diketahui dan ditanyakan dari soal. Pada tahap menyusun rencana penyelesaian sebesar 43% siswa dapat menyusun rencana penyelesaian dari soal tersebut. Pada tahap melaksanakan rencana sebesar 33% siswa mampu menyelesaikan semua langkah yang telah disusun untuk menyelesaikan soal tersebut dengan runtut dan sitematis. Pada tahap terakhir memeriksa kembali hasil jawaban sebesar 16% siswa mampu melakukan pengecekan jawaban, tetapi beberapa siswa kurang mampu dalam mengecek kembali jawaban yang didapatkannya.