Tjang Daniel Chandra, Tjang Daniel
Universitas Negeri Malang

Published : 24 Documents
Articles

Found 24 Documents
Search

IMITATING FAILURES IN COMMUNICATING SOLUTION OF MATHEMATICAL PROBLEM SOLVING OF ELEMENTARY SCHOOL STUDENTS Lestari, Andika Setyo Budi; Nusantara, Toto; Irawan, Edy Bambang; Chandra, Tjang Daniel; As'ari, Abdur Rahman
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 2 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Imitating performance is not a mediocre element, yet it is a unique ability possessed by humans. Researche concerning on imitating performance has been widely conducted in early childhood education and in adults educations. However, imitating performance studies related to elementary school context is rarely explored. This study was intended to figure out the imitating performance of 5th grade student. This study was analyzed qualitatively where the researcher involved in all stage of the research. The results of the research indicated that there were few imitating performance indicators that were not fullfiled. The students were not able to apply the examples in the new context, in other words the students had failed in applying the examples. Consequently, they faced difficulties in communicating the solutions of mathematical problems.  Instead of helping the students, the key words provide by a teachers make the students confuse in resolving different problems.
PROSPECTIVE TEACHERS CONCEPTION OF MATHEMATICAL CREATIVE THINKING Purwosetiyono, Fransiskus Xaverius Didik; Sa'dijah, Cholis; Hidayanto, Erry; Chandra, Tjang Daniel; As'ari, Abdur Rahman; Irawan, Edy Bambang
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 2 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this study was to describe the initial conception of prospective teachers about creative thinking in mathematics. This research used a qualitative research method. The Research was conducted at private universities in Semarang, held in the second semester of the academic year 2016/2017. The subjects were six students of the seventh semester. This research used two instruments; test to explore the concept of creative thinking and interview. This study provides findings that there are similarities in the concept of prospective teachers in mathematical creative thinking. The prospective teacher's conception of the creative thinking of mathematics leads to the emergence of new concepts or ideas in completing mathematical problems based on experience. The appearance of the new idea in question is to solve a different problem from the existing procedure and solve the problem with a different perspective that is still logical. The prospective teacher's said that it was necessary for prospective teachers to understand the concept of creative thinking in mathematics to solve mathematical problems from various perspectives based on his learning experience.
PROSES BERPIKIR MAHASISWA FIELD DEPENDENT BERDASARKAN KERANGKA BERPIKIR MASON Dewi, Ika Rahayu Sintiya; Chandra, Tjang Daniel; Susanto, Hery
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 7: JULI 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i7.12643

Abstract

Abstract: The aim of this study is to describe field dependent students? thinking process based on Mason?s thinking stcructure. Man and woman field dependent subject used all of aspect exclude introduce aspect in entry phase and why in attack phase. Man subject got stuck ones and he believed that his solution can answer the problem. Women subject get twice stuck and the solution can?t answer the problem.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan proses berpikir mahasiswa field dependent berdasarkan kerangka berpikir matematis Mason. Subjek field dependent laki-laki dan perempuan memenuhi semua aspek kecuali aspek introduce pada fase entry dan why pada fase attack. Perbedaannya yaitu subjek 1 mengalami stuck 1 kali dan percaya bahwa hasil pekrjaannya telah dapat menjawab persoalan dan subjek 2 mengalami 2 kali stuck dan tidak dapat menyelesaikan masalah yang diberikan.
Pelaksanaan Scaffolding untuk Mengatasi Kesulitan Siswa dalam Menyelesaikan Masalah PtLSV Parameswari, Pradina; Chandra, Tjang Daniel; Susiswo, Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 5: MEI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.849 KB) | DOI: 10.17977/jptpp.v3i5.11091

Abstract

Abstract: The activity of finding answers to mathematics problems is not easy. Most of MTs Attaraqqie Malang’s students have difficulties when solve PtLSV problems. Students can’t transform narrative texts to mathematics sentence so that they are hard to find the right answer. Therefore, the researchers do a study that aims to describe the form of student difficulties in solving PtLSV problems and the implementation of scaffolding. This research is a qualitative-descriptive research. The research was conducted in MTs Attaraqqie Malang which was attended by 28 students of class VII. The PtLSV problem is given as many as three items. Three research subjects were selected from diagnostic tests, interviews, and mathematics teacher suggestions. The results showed that students: (1) difficulty of understanding the problem (can’t write down the information that was known and asked the question correctly) so assisted by scaffolding level 2 explaining and reviewing; (2) difficulty of devising a plan (can not determine the initial step and the right concept in solving the problem) and assisted by scaffolding level 1 environmental provision and level 2 reviewing; (3) difficulty of carrying out the plan (unable writing mathematical model according to the problem, not using the correct concept, and can not do systematic calculation so that the final result obtained is wrong) and assisted by scaffolding level 2 that is reviewing and restructuring and level 3 is developing conceptual thinking; (4) difficulty of looking back (not checking the truth of answers and difficult to interpreting answers) and assisted by scaffolding level 2 reviewing and level 3 developing conceptual thinking.Abstrak: Kegiatan menemukan jawaban dari permasalahan matematika tidaklah mudah. Sebagian besar siswa MTs Attaraqqie Malang kesulitan ketika menyelesaikan masalah PtLSV. Siswa tidak dapat mengubah teks naratif ke bentuk kalimat matematika sehingga mereka kesulitan untuk menemukan jawaban benar. Oleh sebab itu, peneliti melakukan penelitian yang bertujuan untuk mendeskripsikan bentuk kesulitan siswa dalam menyelesaikan masalah PtLSV dan pelaksanaan scaffoldingnya. Penelitian ini adalah penelitian kualitatif-deskriptif. Penelitian dilaksanakan di MTs Attaraqqie Malang yang diikuti oleh 28 siswa kelas VII. Masalah PtLSV diberikan sebanyak tiga item. Tiga subjek penelitian dipilih dari tes diagnostik, wawancara, dan saran guru matematika. Hasil penelitian menunjukkan bahwa siswa (1) kesulitan memahami masalah (tidak dapat menuliskan informasi yang diketahui dan yang ditanyakan pada soal dengan benar) sehingga dibantu dengan scaffolding level 2 yaitu explaining dan reviewing; (2) kesulitan menyusun rencana (tidak dapat menentukan langkah awal dan konsep yang tepat dalam menyelesaikan masalah) dan dibantu dengan scaffolding level 1 environmental provision dan level 2 reviewing; (3) kesulitan melaksanakan rencana (tidak menuliskan model matematika yang sesuai masalah, tidak menggunakan konsep yang benar, dan tidak dapat melakukan perhitungan yang sistematis sehingga hasil akhir yang diperoleh salah) sehingga diatasi dengan scaffolding level 2, yaitu reviewing dan restructuring serta level 3, yaitu developing conceptual thinking; (4) kesulitan memeriksa kembali (tidak mengecek kebenaran jawaban dan kesulitan menginterpretasi jawaban) dibantu dengan scaffolding level 2 reviewing dan level 3 yaitu developing conceptual thinking.
Proses Berpikir Siswa Quitter dalam Menyelesaikan Masalah SPLDV Berdasarkan Langkah-langkah Polya Irianti, Nathasa Pramudita; Subanji, Subanji; Chandra, Tjang Daniel
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 1, No 2 (2016): September
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1115.411 KB) | DOI: 10.26594/jmpm.v1i2.582

Abstract

Penelitian bertujuan mendeskripsikan proses berpikir siswa quitter dalam menyelesaikan masalah SPLDV. Pertama, dilakukan tes ARP (Adversity Response Profile) untuk mengetahui tipe adversity quotient dari masing-masing siswa. Selanjutnya, dipilih siswa dengan tipe quitter. Siswa diberikan tugas pemecahan masalah SPLDV dan wawancara berbasis tugas. Dalam pemecahan masalah ini, digunakan langkah-langkah pemecahan polya yaitu memahami masalah, menyusun rencana penyelesaian, menyelesaikan masalah sesuai perencanaan, dan memeriksa kembali hasil yang telah diperoleh. Hasilnya, siswa dengan tipe quitter melakukan asimilasi saat memahami masalah dan akomodasi pada langkah menyusun rencana penyelesaian, menyelesaikan masalah sesuai perencanaan, dan memeriksa kembali hasil yang telah diperoleh. Untuk masalah rumit, siswa dengan tipe quitter melakukan asimilasi salah (asimilasi yang memberikan hasil salah) ataupun akomodasi tidak sempurna karena informasi yang dimiliki kurang.
Kemampuan Number Sense Siswa Sekolah Menengah Pertama (SMP) Kelas VII pada Materi Bilangan Safitri, Anis Suraida; Mulyati, Sri; Chandra, Tjang Daniel
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 1 No 1 (2017): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami )
Publisher : Mathematics Department

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kemampuan number sense (kepekaan bilangan) dibutuhkan bagi siswa dalam proses pembelajaran matematika. Siswa dengan number sense yang baik akan mampu memanfaatkan pengetahuannya tentang bilangan dalam pemecahan masalah matematika. Oleh karena itu, tinjauan mengenai kemampuan number sense siswa perlu dilakukan untuk melihat sejauh mana siswa dapat menggunakan kemampuan number sensenya dalam situasi masalah. Berdasarkan latar belakang tersebut, penelitian kualitatif ini bertujuan untuk mendeskripsikan kemampuan number sense siswa kelas VII di Lembaga Bimbingan Belajar Surya Gemilang. Subjek penelitian sebanyak 3 orang, yaitu masing-masing 1 subjek dari kelompok tinggi, sedang, dan rendah. Kemampuan number sense digali melalui wawancara terpadu pada hasil tes kemampuan number sense siswa. Kemudian dianalisis secara deskriptif kualitatif. Dari hasil analisis data, peneliti menyimpulkan bahwa semua subjek tidak memiliki kepekaan yang cukup baik mengenai hubungan antar bilangan, operasi bilangan, hubungan antar operasi bilangan, dan sifat-sifatnya sehingga semua subjek tidak fleksibel dan berfokus pada penggunaan perhitungan prosedural yang mereka terima di sekolah ketika memecahkan masalah.
ANALISIS PROBLEM POSING SISWA DITINJAU DARI TAKSONOMI BLOOM Hussen, Saddam; Asari, Abdur Rahman; Chandra, Tjang Daniel
Jurnal Kajian Pembelajaran Matematika Vol 1, No 2 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.732 KB)

Abstract

This study aimed to describe the analysis of problem posing students in terms of taxonomy bloom. Mathematical material that is chosen is a square and a triangle. This study used a qualitative approach with descriptive research. This study was conducted in one of the SMP Negeri Malang, with research subjects IX class consisting of 32 students. Researchers gave math tests to be analyzed based on blooms taxonomy, and researcher mengkategorisasikannya by high-level thinking skills or Higher Order Thinking Skills (HOTS) and low-level thinking skills or Lower Order Thinking Skills (LOTS). The results of this study indicate that: (1) 96.875% of the 32 students to questions categorized remembering, understanding, and applying, therefore the students included LOTS. (2) there is one category of students including analyzing, it means the student has included HOTS.
Representasi (Eksternal-Internal) pada Penyelesaian Masalah Matematika Faruq, Achmad; Yuwono, Ipung; Chandra, Tjang Daniel
JURNAL REVIEW PEMBELAJARAN MATEMATIKA Vol 1 No 2 (2016)
Publisher : UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15642/jrpm.2016.1.2.149-162

Abstract

This study aimed to describe the pictorial and schematic representations of student understanding. The subjects were 31 students of grade VIII. The results of this study is two pictorial representations (right and wrong) and two schematic representation (right and wrong). Representation understanding of student described as follows: translational stage, students read the word problem to identify relational statements and quantity, then he transforms the mathematical idea into another form that is more easily understood. Integration stage, students identifying relational relationships between mathematical ideas to be organized into a scheme or image. Solution stage, students devise a solution based on the scheme or image that was created, and then perform calculations and check the answer.
PENINGKATAN MOTIVASI BELAJAR SISWA MELALUI PENERAPAN PENDEKATAN REALISTIC MATHEMATICS EDUCATION (RME) Marini, Marini; As’ari, Abdur Rahman; Chandra, Tjang Daniel
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 2, No 4: April, 2017
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.964 KB) | DOI: 10.17977/jptpp.v2i4.8755

Abstract

The purpose of this study is to describe the learning process with the approach of Realistic Mathematics Education (RME), which can increase the motivation to learn mathematics student in materials Systems of Linear Equations in Two Variables on VIII-C students of SMP IT Ash-Shadhili. This research was a Classroom Action Research consisting of four stages, namely planning, action, observation and reflection. In the RME approach, teachers initiate learning by giving realistic problems. Students are asked to understand the problem and then solve it by discussing based on their knowledge and experience on teacher guidance. Students are then asked to discuss and compare answers through presentation activities during class discussions. Teachers motivate students to ask questions, give feedback or feedback. At the end of the learning the students are given the opportunity to deduce the material they have learned. The results showed that the RME approach learning can increase student motivation. This was proven by the percentage of observation results of students learning motivation classically reached 83.33%, while the average percentage of observation results every meeting of two observers reached 80.37% in either category.Tujuan penelitian ini adalah untuk mendeskripsikan proses pembelajaran dengan pendekatan Realistic Mathematics Education (RME) yang dapat meningkatkan motivasi belajar matematika siswa pada materi Sistem Persamaan Linier Dua Variabel di kelas VIII-C SMP IT Asy-Syadzili. Penelitian ini merupakan Penelitian Tindakan Kelas yang terdiri atas empat tahapan, yaitu perencanaan, tindakan, pengamatan dan refleksi. Pada pendekatan RME, guru mengawali pembelajaran dengan memberikan masalah realistik. Siswa diminta untuk memahami masalah kemudian menyelesaikannya dengan cara berdiskusi berdasarkan pengetahuan dan pengalaman mereka atas bimbingan guru. Selanjutnya siswa diminta untuk mendiskusikan dan membandingkan jawaban melalui kegiatan presentasi pada saat diskusi kelas. Guru memotivasi siswa untuk berani bertanya, memberikan masukan atau tanggapan. Diakhir pembelajaran siswa diberi kesempatan untuk menyimpulkan materi yang telah dipelajari. Hasil penelitian menunjukkan bahwa pembelajaran dengan pendekatan RME dapat meningkatkan motivasi belajar siswa. Hal ini dibuktikan dengan persentase hasil observasi motivasi belajar siswa secara klasikal mencapai 83,33%, sedangkan rata-rata persentase hasil observasi setiap pertemuan dari dua orang observer mencapai 80,37% pada kategori baik.
Proses Koneksi Matematis Siswa SMP dalam Menyelesaikan Soal Cerita Sari, Fadhila Kartika; Sudirman, Sudirman; Chandra, Tjang Daniel
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 6: JUNI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.546 KB) | DOI: 10.17977/jptpp.v3i6.11116

Abstract

Abstract: Mathematical connection is used for problem solving. Students’ mathematical connection can be viewed while solving word problems. This study aims to describe mathematical connection process of junior high school student in solving word problems. The type of this study is a case study. Student’s connection data was collected by using test and interview. Furthermore, students’ mathematical connection process was analyzed based on three types of connection; modelling connection, concept connection, and procedure connection. The result of this study indicated that student utilizes all known information and connects all of the given information, therefore the relevant answer is obtained. This study reveals that mathematical connection process is shown by students’ ability to translate the problem into mathematics models and connect mathematical concept and procedure. Abstrak: Koneksi merupakan salah satu alat yang digunakan untuk pemecahan masalah. Koneksi matematis dapat dilihat ketika siwa menyelesaikan soal cerita. Penelitian ini bertujuan mendeksripsikan proses koneksi matematis siswa SMP dalam menyelesaikan soal cerita. Jenis penelitian yang digunakan adalah studi kasus. Data koneksi siswa dikumpulkan melalui tes dan wawancara. Selanjutnya, proses koneksi matematis siswa dianalisis berdasarkan tiga tipe koneksi, yaitu koneksi pemodelan, koneksi konsep, dan koneksi prosedur. Hasil penelitian menunjukkan bahwa  siswa dapat menggunakan semua informasi yang diketahui dan menghubungkan informasi tersebut sehingga diperoleh jawaban yang relevan. Proses koneksi matematis siswa ditunjukkan dengan kemampuan menerjemahkan soal ke dalam bentuk matematis dan kemampuan menghubungkan konsep dan prosedur matematika.