Susiswo Susiswo, Susiswo
Unknown Affiliation

Published : 23 Documents
Articles

Found 23 Documents
Search

IDENTIFICATION ERRORS OF PROBLEM POSED BY PROSPECTIVE PRIMARY TEACHERS ABOUT FRACTION BASED MEANING STRUCTURE Prayitno, Lydia Lia; Purwanto, Purwanto; Subanji, Subanji; Susiswo, Susiswo
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 1 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this study was to identify problem posed by prospective teachers about addition fractions based on meaning structure. This study is a quantitative descriptive to identify errors of fraction problem posed by prospective teachers based on the meaning.  46 prospective primary teachers in 8th semester in universities at Surabaya were involved in this research. Instrument in this study is a problem posing worksheet consisting two operations on fractions. Problems posed by prospective teachers were analyzed through three stages, grouping problems based on categories, structure of meaning, and analyze the error of the problem posed. The results of data analysis indicated that: (1) on the category of questions about fractions of 93.48% for 1stoperations and 97.83% for 2ndoperation, (2) on the Non-question category about operations fraction is 6.52% for 1st operations and 1.17% for 2nd operation. Grouping problems posed by prospective teachers based on structure meaning combined category is 62.79% for 1st operations and 75.56% for 2nd operation. For category of part relationships overall is 27.91% for 1st operations and 20% for 2ndoperation, while those which not belonging to the second category are 9.3% for 1st operations and 4.44% for 2nd operation. The errors of problem posed by prospective teacher based on meaning structure are (1) not related to daily life situation, (2) illogical problem, (3) unit is not appropriate, (4) fractions incompatible with the sum operation (5) gives whole number to give meaning fraction, (6) lost information, and (7) the added result exceeds the overall concept of the fraction.
KONEKSI MATEMATIS SISWA DALAM MENYELESAIKAN MASALAH TIDAK LENGKAP DALAM DISKUSI KELOMPOK Nurudini, Nadia; Susiswo, Susiswo; Sisworo, Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12838

Abstract

Abstract: The purpose of this study is to describe students' mathematical connection ability on cube material in solving incomplete problems in group discussion. The sample in this study were 3 groups that has high, medium, and low mathematical abilities. The results of this study was found that the students with high ability were able to understand all mathematical connection indicators, which were finding the connection between mathematical topics, finding the connection of mathematics to other knowledges, and finding the connection of mathematics to dayly life. The students with medium ability were able to understand the first and second indicators. The students with low ability were only able to understand one indicator which was finding the connection between mathematical topics.Abstrak: Tujuan dari penelitian ini adalah untuk mendeskripsikan kemampuan koneksi matematis siswa pada materi bangun ruang kubus dalam menyelesaikan masalah tidak lengkap dalam diskusi kelompok. Sampel dalam penelitian ini diambil tiga kelompok siswa yang memiliki kemampuan matematis tinggi, sedang, dan rendah. Dari hasil penelitian diperoleh bahwa siswa berkemampuan tinggi dapat menguasai ketiga indikator kemampuan koneksi matematis, yaitu koneksi matematis antar topik matematika, koneksi matematis dengan mata pelajaran lain, dan koneksi matematis dengan kehidupan sehari-hari. Siswa berkemampuan sedang dapat menguasai indikator I dan II. Siswa berkemampuan rendah hanya menguasai satu indicator, yaitu koneksi antar topik matematika.
KOMUNIKASI MATEMATIS SISWA DALAM MENYELESAIKAN MASALAH PERSAMAAN GARIS KETIKA FOLDING BACK Syafitri, Intan; Susiswo, Susiswo; Permadi, Hendro
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12816

Abstract

Abstract: This research aims to the mathematical communication of students who experience folding back when solving mathematical problems. The eight grade students of SMP Islam Syabilurrosyad Malang have participated here. Student with high communication going through folding back effectively and clearly following logic reasoning. Student with high communication could write folding back result rightly and consecutively. Student with medium communication going through folding back after intervention. Student with medium communication have communicated folding back result clearly and consecutively but still there were mistakes in the last solution.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan komunikasi matematis siswa yang mengalami folding back ketika menyelesaikan masalah matematika. Penelitian ini dilaksanakan di kelas VIII SMP Islam Syabilurrosyad kota Malang. Siswa dengan kemampuan tinggi mengomunikasikan folding backnya dengan efektif dan jelas disertai alasan logis. Subjek berkemampuan tinggi juga menuliskan respons hasil folding back nya dengan benar dan terurut. Subjek berkemampuan sedang mengalami folding back setelah adanya intervensi. Subjek mengomunikasikan hasil folding back dengan jelas dan terurut, namun masih terdapat kesalahan pada solusi akhir jawabannya.
REPRESENTASI DALAM MENYELESAIKAN MASALAH BARISAN BERDASARKAN TINGKAT KEMAMPUAN SISWA Prasanti, Devinta Reza; Susiswo, Susiswo
Jurnal Kajian Pembelajaran Matematika Vol 3, No 1 (2019): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstractThe aim of this research is to describe the representation of solving problem in sequence based on the level of students? abilities. This research used the qualitative research method with descriptive type. The subject of this research is determined by the result of the pre-requisite knowledge test and interview. The result of this research shows that, in solving problems in sequence, students with high ability use verbal, visual, and symbolic representation. Students with high ability use four steps of problem solving to obtain correct answer. Student with average ability only use verbal and symbolic representation. Student with average ability do not apply the look back step in one of the problems. On the other hand, student with low ability, use verbal, visual, and symbolic representation. In solving problem, student with low ability do not apply the look back step in two problems, and the answer obtained are wrong.
COOPERATIVE LEARNING WITH SAVI APPROACH TO IMPROVE STUDENT LEARNING OUTCOMES CLASS X SMK GAJAH MADA BANYUWANGI Prasetyo, Eko; Susiswo, Susiswo; Hidayanto, Erry
Jurnal Kajian Pembelajaran Matematika Vol 3, No 2 (2019): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The student learning outcomes are still low.we need to improve that. Cooperative learning with SAVI approach can be implemented to solve the problem above 
PEMBELAJARAN BERDASARKAN TEORI VAN HIELE BERBANTUAN HANDS ON ACTIVITY (HOA) UNTUK MENINGKATKAN KOMPETENSI PENGETAHUAN DAN KETERAMPILAN PEMECAHAN MASALAH Wulandari, Ratna Titi; Sutawidjaja, Akbar; Susiswo, Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.8, Agustus 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (687.974 KB) | DOI: 10.17977/jp.v1i8.6666

Abstract

This study aims at examining the learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted to improve students’ knowledge and skill. The learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted consists of zero level, first level, and second level. In each level, there are five stages they are Information, guide orientation, explicitation, free orientation, integration in which Hands-on Activity (HOA) is used in one of the stages. This research is a classroom action research focusing on VII E in SMPN 3 Grabag, Magelang Regency. The result of this study showed that the learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted improves the students’ knowledge and skill.Penelitian ini bertujuan mendeskripsikan pembelajaran berdasarkan teori van Hiele berbantuan HOA untuk meningkatkan kompetensi pengetahuan dan keterampilan siswa. Pembelajaran berdasarkan teori van Hiele berbantuan HOA, yaitu pembelajaran yang melalui level 0, level 1, dan level 2. Setiap level ada 5 tahap: information, guide orientation, explicitation, free orientation, integration dan HOA digunakan di salah satu tahap tersebut. Penelitian ini adalah Penelitian Tindakan Kelas VII E di SMP N 3 Grabag, Kabupaten Magelang.  Setelah peneliti melakukan pembelajaran berdasarkan teori van Hiele berbantuan HOA ternyata pengetahuan dan keterampilan pemecahan masalah garis dan sudut siswa tersebut meningkat. 
PROSES KONEKSI MATEMATIS SISWA BERGAYA KOGNITIF REFLEKTIF DALAM MENYELESAIKAN MASALAH ALJABAR BERDASARKAN TAKSONOMI SOLO Diana, Risma Firda; Irawan, Edy Bambang; susiswo, Susiswo
Jurnal Kajian Pembelajaran Matematika Vol 1, No 1 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (913.886 KB)

Abstract

Hasil observasi dan uji pendahuluan pada beberapa SMP di kota Malang menunjukkan bahwa siswa masih kesulitan dalam menyelesaikan masalah aljabar. Hal tersebut karena siswa masih kesulitan dalam membuat koneksi matematika dengan kehidupan sehari-hari, koneksi konsep aljabar dengan konsep lain dimatematika, serta koneksi antar konsep aljabar. Respon yang ditunjukkan beberapa siswa dalam menyelesaikan masalah aljabar pada uji pendahuluan hanya sampai pada level multistructural pada taksonomi SOLO. Salah satu faktor yang mempengaruhi respon yang diberikan siswa dalam menyelesaikan masalah adalah gaya kognitif. Gaya kognitif berdasarkan penggunaan waktu dan jumlah kesalahan yang dibuat menurut Kagan dan Kogan adalah gaya kognitif reflektif dan impulsif. Tujuan penelitian ini adalah mendeskripsikan proses koneksi matematis siswa bergaya kognitif reflektif dalam menyelesaikan masalah aljabar berdasarkan taksonomi SOLO. Penelitian ini merupakan penelitian kualitatif deskriptif dengan menggunakan instrumen tes gaya kognitif, tes koneksi, dan wawancara. Hasil penelitian menunjukkan bahwa siswa bergaya kognitif reflektif mampu menggunakan semua informasi yang diketahui kemudian menghubungkan semua informasi tersebut sehingga dapat menyelesaikan permasalahan yang diberikan. Berdasarkan hal tersebut maka proses koneksi matematis siswa bergaya kognitif reflektif dalam menyelesaikan masalah aljabar mencapai level relational hingga level extended abstract pada taksonomi SOLO.
PENGEMBANGAN LKS MENGGUNAKAN MODEL PROBLEM CREATING UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA KELAS VIII SMP Sari, Muliana; Susiswo, Susiswo; Nusantara, Toto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 2, No 6: Juni 2017
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.594 KB) | DOI: 10.17977/jptpp.v2i6.9340

Abstract

The aim of this research is developing student activity sheets (LKS) with model problem creating to improve students’ ability to think critically. This research is a developmental research with Plomp’s development model. This development model consists of three stages that are (1) preliminary research; (2) prototype phase; (3) assessment phase. The test subjects involved 27 students of class VIII of SMPN 1 Gambut. Based on the results of research from the design of LKS consists of cover, time allocation, learning objectives, content of LKS and assessment. Activities in the LKS consists of five stages of model problem creating that are learning objectives, problem context, create the problem, anticipate students’ solutions and reflect. The contents of the LKS consists questions that guide students to find mathematical concepts or principles, issues that need to be spent students and guide students to critical thinking that are basic clarification, basic for decision, inference and advanced clarification. The validations results from three validators showed that the LKS satisfied valid criteria. As a result on field testing in SMPN 1 Gambut students’ responses were positive. In addition, this learning instrument can increase students’ ability to think critically by 74%.Penelitian ini bertujuan untuk mengembangkan LKS dengan model problem creating yang dapat meningkatkan kemampuan berpikir kritis. Penelitian ini termasuk pengembangan dengan model pengembangan Plomp, yaitu (1) preliminary research (penelitian awal); (2) prototyping phase (fase pengembangan); (3) assessment phase (fase penilaian). Subjek uji coba melibatkan 27 siswa kelas VIII SMPN 1 Gambut. Desain LKS terdiri atas cover, alokasi waktu, tujuan pembelajaran, isi LKS, dan penilaian. Kegiatan dalam LKS terdiri atas lima tahapan model problem creating, yaitu menyampaikan tujuan pembelajaran, konteks masalah, menciptakan masalah, antisipasi jawaban, dan refleksi. Isi LKS terdiri dari pertanyaan-pertanyaan yang menuntun siswa menemukan konsep atau prinsip matematika, masalah yang perlu diselesaikan siswa, dan memandu siswa untuk berpikir kritis antara lain memberikan penjelasan dasar, membangun keterampilan dasar, menyimpulkan dan memberikan penjelasan lanjut. Hasil validasi LKS dari tiga validator menunjukkan bahwa LKS memenuhi kriteria valid. Berdasarkan uji coba lapangan di SMPN 1 Gambut respon siswa terhadap LKS positif. Selain itu, peningkatan kemampuan berpikir kritis siswa sebesar 74%.
Pelaksanaan Scaffolding untuk Mengatasi Kesulitan Siswa dalam Menyelesaikan Masalah PtLSV Parameswari, Pradina; Chandra, Tjang Daniel; Susiswo, Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 5: MEI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.849 KB) | DOI: 10.17977/jptpp.v3i5.11091

Abstract

Abstract: The activity of finding answers to mathematics problems is not easy. Most of MTs Attaraqqie Malang’s students have difficulties when solve PtLSV problems. Students can’t transform narrative texts to mathematics sentence so that they are hard to find the right answer. Therefore, the researchers do a study that aims to describe the form of student difficulties in solving PtLSV problems and the implementation of scaffolding. This research is a qualitative-descriptive research. The research was conducted in MTs Attaraqqie Malang which was attended by 28 students of class VII. The PtLSV problem is given as many as three items. Three research subjects were selected from diagnostic tests, interviews, and mathematics teacher suggestions. The results showed that students: (1) difficulty of understanding the problem (can’t write down the information that was known and asked the question correctly) so assisted by scaffolding level 2 explaining and reviewing; (2) difficulty of devising a plan (can not determine the initial step and the right concept in solving the problem) and assisted by scaffolding level 1 environmental provision and level 2 reviewing; (3) difficulty of carrying out the plan (unable writing mathematical model according to the problem, not using the correct concept, and can not do systematic calculation so that the final result obtained is wrong) and assisted by scaffolding level 2 that is reviewing and restructuring and level 3 is developing conceptual thinking; (4) difficulty of looking back (not checking the truth of answers and difficult to interpreting answers) and assisted by scaffolding level 2 reviewing and level 3 developing conceptual thinking.Abstrak: Kegiatan menemukan jawaban dari permasalahan matematika tidaklah mudah. Sebagian besar siswa MTs Attaraqqie Malang kesulitan ketika menyelesaikan masalah PtLSV. Siswa tidak dapat mengubah teks naratif ke bentuk kalimat matematika sehingga mereka kesulitan untuk menemukan jawaban benar. Oleh sebab itu, peneliti melakukan penelitian yang bertujuan untuk mendeskripsikan bentuk kesulitan siswa dalam menyelesaikan masalah PtLSV dan pelaksanaan scaffoldingnya. Penelitian ini adalah penelitian kualitatif-deskriptif. Penelitian dilaksanakan di MTs Attaraqqie Malang yang diikuti oleh 28 siswa kelas VII. Masalah PtLSV diberikan sebanyak tiga item. Tiga subjek penelitian dipilih dari tes diagnostik, wawancara, dan saran guru matematika. Hasil penelitian menunjukkan bahwa siswa (1) kesulitan memahami masalah (tidak dapat menuliskan informasi yang diketahui dan yang ditanyakan pada soal dengan benar) sehingga dibantu dengan scaffolding level 2 yaitu explaining dan reviewing; (2) kesulitan menyusun rencana (tidak dapat menentukan langkah awal dan konsep yang tepat dalam menyelesaikan masalah) dan dibantu dengan scaffolding level 1 environmental provision dan level 2 reviewing; (3) kesulitan melaksanakan rencana (tidak menuliskan model matematika yang sesuai masalah, tidak menggunakan konsep yang benar, dan tidak dapat melakukan perhitungan yang sistematis sehingga hasil akhir yang diperoleh salah) sehingga diatasi dengan scaffolding level 2, yaitu reviewing dan restructuring serta level 3, yaitu developing conceptual thinking; (4) kesulitan memeriksa kembali (tidak mengecek kebenaran jawaban dan kesulitan menginterpretasi jawaban) dibantu dengan scaffolding level 2 reviewing dan level 3 yaitu developing conceptual thinking.
PROSES BERPIKIR MAHASISWA DALAM MEMBUKTIKAN PROPOSISI: KONSEPTUALISASI-GAMBAR Anwar, Lathiful; Nasution, Syaiful Hamzah; Sudirman, Sudirman; Susiswo, Susiswo
Jurnal Kajian Pembelajaran Matematika Vol 2, No 2 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (507.933 KB)

Abstract

Evidence is an absolute feature of mathematics and a key component in mathematics education. Although the evidence is very important, the fact is that the evidence is something that is difficult to teach or learn. One of the difficulty factors is the inadequacy of conceptual concepts and the inability to use definitions to structure evidentiary structures. This paper will describe the thinking process of students in proving a geometric proposition. Four concept of image conceptualization framework is used as a tool to explore students' thinking processes in proving a geometric proposition. One student's work and vignette, FMZ, was analyzed to provide a visualization of the image-conceptualization process used by FMZ in identifying a proposition. The results of the analysis confirm that the ability to construct evidence is related to the ability to conceptualize images, find local-local conceptualizations (traits / conclusions related to one part of the image) and global conceptualization and link relational relationships between local conceptualizations and global conceptualization into a series of statements supporting propositions / conclusion which will be proven to be a series of logical statements.