Dani Syahid, Dani
Unknown Affiliation

Published : 1 Documents
Articles

Found 1 Documents
Search

Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV) Syahid, Dani; Jumadi, Jumadi; Nursantika, Dian
JOIN (Jurnal Online Informatika) Vol 1, No 1 (2016)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v1i1.6

Abstract

Tanaman hias daun biasa digunakan untuk mempercantik halaman pekarangan rumah dengan aneka warna yang indah pada tanaman hias daun ini menjadi bahan perhatian khususnya bagi pecinta tanaman. Namun dengan banyaknya jenis tanaman hias membuat kita sulit untuk mengetahui nama tumbuhan yang kita minati.Sistem pendeteksi citra tanaman hias daun bekerja dengan cara membandingkan data citra latih yang telah tersimpan pada database terhadap data citra yang akan diuji. Data citra uji akan diklasifikasikan dengan menggunakan penerapan metode K-Nearest Neighboor yaitu berfungsi untuk menghitung jarak terdekat antara data citra latih dan data citra uji pada setiap pikselnya. Setiap piksel pada citra akan dilakukan proses konversi red, Green, Blue (RGB) ke dalam ekstraksi fitur warna hue, saturation, value (HSV) terlebih dahulu. Setelah didapat nilai HSV, maka dilakukan proses klasifikasi menggunakan metode KNN. Data sampel pada penelitian ini menggunakan 5 klasifikasi citra data latih dengan 10 data citra  uji pada setiap data citra latih. Pada penelitian ini, diperoleh hasil dari akurasi sistem pendeteksi citra tanaman dengan hasil mencapai 92%.