Wusko, Ikna Urwatul
Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Published : 1 Documents
Articles

Found 1 Documents
Search

The Optimization of Collimator Material and In Vivo Testing Dosimetry of Boron Neutron Capture Therapy (BNCT) on Radial Piercing Beam Port Kartini Nuclear Reactor by Monte Carlo N-Particle Extended (MCNPX) Simulation Method Sardjono, Yohannes; Kusminarto, Kusminarto; Wusko, Ikna Urwatul
Indonesian Journal of Physics and Nuclear Applications Vol 3 No 1 (2018)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24246/ijpna.v3i1.29-35

Abstract

Boron Neutron Capture Therapy (BNCT) on radial piercing beam port Kartini nuclear reactor by MCNPX simulation method has been done in the National Nuclear Energy Agency Yogyakarta. BNCT is a type of therapy alternative that uses nuclear reaction 10B (n, α) 7Li to produce 2.79 MeV total kinetic energy. To be eligible IAEA conducted a study of design improvements and variations on some parameters to optimum condition which are Ni-nat thickness of 1.75 cm as collimator wall, Al2S3 as thick as 29 cm as moderator, Al2O3 0.5 cm thick as filter, Pb and Bi thickness of 4 cm as the end of the gamma shield collimators and Bi thickness of 1.5 cm as the base gamma shield collimators. The total dose was accepted in the tumor tissue 900 × 10-4 Gy/s. Radiation dose on the tumor tissue is 50±3 Gy with time irradiation of 9 minutes and 10 seconds. That dose was given into skin tissue and healthy liver tissue consecutively (6.00±0.05) × 10-2 Gy and (10.00±0.05) × 10-2 Gy. It shows the dose received by healthy tissue is still within safe limits.