Saputro, Razis Aji
Faculty of Science and Technology, State Islamic University Walisongo Central Java

Published : 2 Documents

Found 2 Documents

Classical Cryptography of Winds Eye Cell Circles Saputro, Razis Aji; Sokawati, Risti; Mudrikah, Mudrikah; Puspita, Nikken Prima
Journal Of Natural Sciences And Mathematics Research Vol 2, No 2 (2016): Volume 2, Nomor 2, 2016
Publisher : Faculty of Science and Technology, State Islamic University Walisongo Central Java

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2016.1.2.1658


This classic cryptographic algorithms was designed from the concept of cardinal directions and the S-box. circles Concept given 16 directions winds and 8 circles lined with each cells according to ASCII table. The process of encryption algorithm using two kinds of key symbol that are (k1) form 16 symbols of the wind, and (k2) is a 7-bit binary number. plaintext encryption process become chiperteks1 with forming angle against north wind and k1 roomates are from plaintext rotating accordance angle formed. Chipertext 1 to chipertext 2 using binary numbers divided become r1 as directions displacement away from the center circle and r2 move with rotating around the center circle. Spinning process followed directions clockwise circle if even if odd and vice versa. Decryption process is done by doing a backward on the algorithm by using the key k2 (r2 then r1) and then r1. Spins counter-encryption process. ©2016 JNSMR UIN Walisongo. All rights reserved.
OPERATOR ACCRETIVE KUAT PADA RUANG HILBERT Saputro, Razis Aji; Hariyanto, Susilo; Sumanto, YD
Journal of Fundamental Mathematics and Applications (JFMA) Vol 1, No 1 (2018): Journal of Fundamental Mathematics and Applications
Publisher : Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (19.571 KB) | DOI: 10.14710/jfma.v1i1.10


Abstract. Pre-Hilbert space is a vector space equipped with an inner-product. Furthermore, if each Cauchy sequence in a pre-Hilbert space is convergent then it can be said complete and it called as Hilbert space. The accretive operator is a linear operator in a Hilbert space. Accretive operator is occurred if the real part of the corresponding inner product will be equal to zero or positive. Accretive operators are also associated with non-negative self-adjoint operators. Thus, an accretive operator is said to be strict if there is a positive number such that the real part of the inner product will be greater than or equal to that number times to the squared norm value of any vector in the corresponding Hilbert Space. In this paper, we prove that a strict accretive operator is an accretive operator.Abstrak. Ruang Pre-Hilbert merupakan ruang vektor yang dilengkapi dengan perkalian dalam. Lebih lanjut, apabila setiap barisan Cauchy dalam suatu ruang Pre-Hilbert bersifat konvergen maka ia dapat disebut komplit dan ia disebut ruang Hilbert. Operator accretive merupakan operator linier dalam suatu ruang Hilbert. Operator accretive muncul jika bagian real dari perkalian dalam bernilai nol atau positif. Operator Accretive juga berasosiasi dengan operator non-negative self-adjoint. Kemudian, suatu operator accretive dikatakan kuat jika terdapat bilangan positif sedemikian sehingga bagian real dari perkalian dalam bernilai lebih besar atau sama dengan bilangan tersebut dikalikan nilai norma dikuadratkan dari sebarang vektor dalam ruang Hilbert yang bersangkutan. Dalam artikel ini, dibuktikan bahwa suatu operator accretive kuat juga merupakan operator accretive.