Articles

Found 2 Documents
Search

Enhancement of β-Glucosidase Activity in Penicillium sp. by Random Mutation with Ultraviolet and Ethyl Methyl Sulfonate Syafriana, Vilya; Nuswantara, Sukma; Mangunwardoyo, Wibowo; Lisdiyanti, Puspita
ANNALES BOGORIENSES Vol 18, No 2 (2014): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.422 KB) | DOI: 10.1234/98

Abstract

The genus Penicillium has a potential ability to produce β-glucosidase. The aim of the study was to improve the β-glucosidase activity of Penicillium sp. ID10-T065 with physical (Ultraviolet = UV), chemical (Ethyl Methyl Sulfonate = EMS), and combined mutation (UV-EMS). The spores of Penicillium sp. ID10-T065 were exposed into UV irradiation for 3 minutes with dose of 0.1 J/cm2 and 13 cm of distances. Chemical mutation was done by treated spores into 3% of EMS solution for an hour. Combined mutation of UV and EMS were also performed by UV for 3 minutes (0.1 J/cm2, 15 cm) and continued with soaking into 2-3% of EMS solution. The developed mutants were screened, selected and assayed. Comparison of enzyme activities with the wild- type (1.78 U/ml), mutant UV13 (5.53 U/ml) showed a 3.1 fold increase; mutant EM31 (4.26 U/ml) showed a 2.4 fold increase. Meanwhile, mutant UM23 obtained from the multiple exposures showed a decreased activity (1.75 U/ml). Mutant UV13 showed the best enzyme activity to be considered as a potential strain for β-glucosidase producer. This result needs to be further elaborated especially on its genetic stability studies in order for the ascertained as a stable mutant.
Characterization of Protease Crude Extract from Indigenous Lactic Acid Bacteria and the Protein Degradation Capacity in Local Tuber and Cereal Paste Flour Khusniati, Tatik; Nur Kasfillah, Nanda Sabbaha; Syafriana, Vilya; Zahara, Resti Sofia; Citroreksoko, Padmono; Sulistiani, Sulistiani; Anindyawati, Trisanti
Jurnal Kimia Terapan Indonesia (Indonesian Journal of Applied Chemistry) Vol 21, No 1 (2019)
Publisher : Research Center for Chemistry - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (35.694 KB) | DOI: 10.14203/jkti.v21i1.419

Abstract

Protease hidrolyzed protein in flour in order to more digest by human ulcer. Lactobacillus plantarum B110 and Lactobacillus satsumensis are indigenous lactic acid bacteria that produce protease. The objective of this research is to characterization of protease crude extract from indigenous lactic acid bacteria and the protein degradation capacity in local tuber and cereal paste flour. Tuber and cereal flour used were purple sweet potato (Dioscorea alata), cassava (Manihot esculenta), rice (Oryza sativa), corn (Zea mays) and wheat (Triticum) as comparison. Proteaseactivity was tested by Horikoshi method (1971) and protein degradation was by formol titration. Research results showed that optimum activities and stabilities of Lactobacillus plantarum B110 were at pH: 7.5, 45oC and pH:5.0-8.0, 35-50oC, while that L. satsumensis EN 38-32 were at pH: 7.0, 40oC and pH:6.0-8.0, 20-45oC. Increases in protein degradation capacity of the paste flour additional proteases crude extract from L. plantarum B110 were 0.0838% (purple sweat potato), 1.3299% (cassava), 0.5834% (corn), 0.7499% (rice) and 1.5551% (wheat as comparison); while that L. satsumensis EN 38-32 were 0.20% (purple sweet potato), 0.32% (cassava), 0.87% (corn), 1.17% (rice). Based on increases in protein degradation capacity, protease crude extract from L. plantarum B110  and L. satsumensis EN 38- 32 were sequently better to hidrolyze protein of cassava and rice paste flour than thatother tuber and cereal.