ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 3, No 1 (2015): ELKOMIKA

Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma

AULIA, SUCI (Unknown)
HADIYOSO, SUGONDO (Unknown)
RAMADAN, DADAN NUR (Unknown)



Article Info

Publish Date
01 Jan 2015

Abstract

ABSTRAKPenelitian mengenai pengklasifikasian tingkat keparahan penyakit Diabetes Retinopati berbasis image processing masih hangat dibicarakan, citra yang biasa digunakan untuk mendeteksi jenis penyakit ini adalah citra optik disk, mikroaneurisma, eksudat, dan hemorrhages yang berasal dari citra fundus. Pada penelitian ini telah dilakukan perbandingan algoritma SVM dengan KNN untuk klasifikasi penyakit diabetes retinopati (mild, moderate, severe) berdasarkan citra eksudat dan microaneurisma. Untuk proses ekstraksi ciri digunakan metode wavelet  pada masing-masing kedua metode tersebut. Pada penelitian ini digunakan 160 data uji, masing-masing 40 citra untuk kelas normal, kelas mild, kelas moderate, kelas saviere. Tingkat akurasi yang diperoleh dengan menggunakan metode KNN lebih tinggi dibandingkan SVM, yaitu 65 % dan 62%. Klasifikasi dengan algoritma KNN diperoleh hasil terbaik dengan parameter K=9 cityblock. Sedangkan klasifikasi dengan metode SVM diperoleh hasil terbaik dengan parameter One Agains All.Kata kunci: Diabetic Retinopathy, KNN , SVM, Wavelet. ABSTRACT Research based on severity classification of the disease diabetic retinopathy by using image processing method is still hotly debated, the image is used to detect the type of this disease is an optical image of the disk, microaneurysm, exudates, and bleeding of the image of the fundus. This study was performed to compare SVM method with KNN method for classification of diabetic retinopathy disease (mild, moderate, severe) based on exudate and microaneurysm image. For feature extraction uses wavelet method, and each of the two methods. This study made use of 160 test data, each of 40 images for normal class, mild class, moderate class, severe class. The accuracy obtained by KNN higher than SVM, with 65% and 62%. KNN classification method achieved the best results with the parameters K = 9, cityblock. While the classification with SVM method obtained the best results with parameters One agains all .Keywords: Diabetic Retinopathy, KNN, SVM, Wavelet.

Copyrights © 2015






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...