cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 879 Documents
IMPROVEMENT OF DIRECT TORQUE CONTROL APPLIED TO DOUBLY FED INDUCTION MOTOR UNDER VARIABLE SPEED Aroussi, Hala Alami; Ziani, Elmostafa; Bouderbala, Manale; Bossoufi, Badre
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i1.pp97-106

Abstract

This work is dedicated to the study of an improved direct torque control of the doubly fed induction motor (DFIM). The control method adopts direct torque control 'DTC' because of its various advantages like the ease of implementation which allows a good performance at transient and steady state without PI regulators and rotating coordinate transformations. To do this, the modeling of the motor is performed. Subsequently, an explanation of the said command is spread out as well as the principle of adjusting the flux and the electromagnetic torque according to the desired speed. Then, the estimation method of these two control variables will be presented as well as the adopted switching table of the hysteresis controller model used based on the model of the multilevel inverters. Finally, the robustness of the developed system will be analyzed with validation in Matlab/Simulink environment to illustrate the performance of this control.
A SURVEY OF MULTILEVEL VOLTAGE SOURCE INVERTER TOPOLOGIES, CONTROLS, AND APPLICATIONS Shanono, Ibrahim Haruna; Abdullah, Nor Rul Hasma; Muhammad, Aisha
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i3.pp1186-1201

Abstract

Multi-level converters are every day attracting research interest due to it tremendous positive contributions they are making in the power industries. The converter has put hope in the minds of power electronic engineers that a time will come when it will break a record by providing an efficient means of utilizing the abundant renewable energy resources. The paper presents a review of multilevel voltage source converters that are widely being used in engineering applications. It reports the technological advancements in converter topologies of Flying Capacitor (FC), Neutral Point (NPC) /Diode Clamped, and Cascaded H-Bridge (CHB) with their respective advantages and disadvantages. Recent customized/hybrid topologies of the three-phase multilevel inverter with reduced component count and switching combination are reported. The paper also reviewed different modulation techniques such as the multilevel converter carrier base PWM, Space Vector Modulation techniques (SVM), and Selective Harmonic Elimination method (SHE-PWM). Finally, various multilevel converters areas of application were highlighted. This review will expose the reader to the latest developments made in the multi-level topologies, modulation techniques, and applications.
MODELLING OF A 3-PHASE INDUCTION MOTOR UNDER OPEN-PHASE FAULT USING MATLAB/SIMULINK Jannati, Mohammad; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 4: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i4.pp1146-1152

Abstract

The d-q model of Induction Motors (IMs) has been effectively used as an efficient method to analyze the performance of the induction machines. This study presents a step by step Matlab/Simulink implementation of a star-connected 3-phase IM under open-phase fault (faulty 3-phase IM) using d-q model. The presented technique in this paper can be simply implemented in one block and can be made available for control purposes. The simulated results provide to show the behavior of the star-connected 3-phase IM under open-phase fault condition.
ON LINE STATOR RESISTANCE TUNING OF DTC CONTROL CSI FED IM DRIVES selvam, N. Panner; Prasanna, M. Arul; Christopher raj, I. Gerald
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 2, No 2: June 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Current source inverter (CSI) fed drives are employed in high power applications. The conventional CSI drives suffer from drawbacks such as harmonic resonance, unstable operation at low speed ranges, and torque pulsation. CSI fed drives with Direct Torque Control (DTC) has drawn the attention of the motor drives designers because its implementation requires no position sensor. Crucial to the success of this scheme is the estimation of electromagnetic torque and stator flux linkages using the measured stator voltages and currents. The estimation is dependent only on one machine parameter, stator resistance. The variation of the stator resistance, deteriorates the performance of the drive by introducing errors in the estimated flux linkage?s magnitude and its position and hence in the electromagnetic torque. Resistance change also skews the torque linearity thus making the motor drive a less than ideal torque amplifier. Parameter compensation using stator current phasor error has been proposed in literature. To obtain the stator current phasor error, the stator current reference is required which is not usually available in direct torque control schemes. An analytical derivation of the stator current phasor reference is derived systematically from the reference electromagnetic torque and flux linkages. The error between the stator current phasor reference and its measured value is a measure of the stator resistance variation from its set value. For the first time, it is demonstrated in this paper that DTC motor drive system can become unstable when the set value of the stator resistance in the controller is higher than the stator resistance in the machine. Hence parameter adaptation is not only important for torque linearity but also for stability of the system is shown in this paper.DOI: http://dx.doi.org/10.11591/ijpeds.v2i2.332
WIRELESS POWER TRANSFER THROUGH METAL USING INDUCTIVE LINK Vu, Tuan Anh; Pham, Chi Van; Pham, Anh-Vu; Gardner, Christopher S.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i4.pp1906-1913

Abstract

This paper presents a highly efficient power transfer system based on a co-design of a class-E power amplifier (PA) and a pair of inductively coupled Helical coils for through-metal-wall power transfer. Power is transferred wirelessly through a 3.1-mm thick aluminum barrier without any physical penetration and contact. Measurement results show that the class-E PA achieves a peak power gain of 25.2 dB and a maximum collector efficiency of 57.3%, all at 200 Hz. The proposed system obtains a maximum power transfer efficiency of 9% and it can deliver 5 W power to the receiver side through the aluminum barrier.
CLOSED LOOP ANALYSIS OF MULTILEVEL INVERTER FED DRIVES VS, Bharath; Mani, Gopinath
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 4, No 3: September 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper deals with the simulation and implementation of multilevel inverter for drives application. Here the focuses will be on improving the efficiency of the multilevel inverter and quality of output voltage waveform. The circuit is developed towards high efficiency, high performance, and low cost, simple control scheme. Harmonics Elimination were implemented to reduce the Total Harmonics Distortion (THD) value which is achieved by selecting appropriate switching angles. In this paper to determine the performance of rectifier, steady state analysis is done.  Furthermore, the merits of multilevel inverter topology are inherited.Closed loop control is done to analysis the stability of the system.DOI: http://dx.doi.org/10.11591/ijpeds.v4i3.5937
PERFORMANCE ANALYSES ON FLUIDIZED BED DRYER INTEGRATED BIOMASS FURNACE WITH AND WITHOUT AIR PREHEATER FOR PADDY DRYING yahya, M; Fahmi, Hendriwan; Hadi, Syafrul; Edison, Edison
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i3.pp1555-1563

Abstract

The performance of a fluidized bed dryer integrated biomass furnace with air preheater (FBD with APH) and a fluidized bed dryer integrated biomass furnace without air preheater (FBD without APH) for drying of paddy  have been evaluated. The  FBD with APH and FBD without APH decreased the moisture of paddy from 24% (wet basis) to 14% (wet basis) within 43 and 47 minutes with average temperatures and relative humidities of 59.58 oC and 59.14oC, and 18.81% and 18.68%, respectively. The drying rate of paddy varied in the range of 0.11 kg/min-0.32 kg/min and 0.10 kg/min- 0.30 kg/min for FBD with APH and FBD without APH, with average values of 0.18kg/min and 0.17kg/min, respectively. The minimum, maximum, and average value speci?c moisture evaporation rate (SMER) was  0.20 kg/kWh, 0.57 kg/kWh, and 0.31 kg/kWh, respectively for FBD with APH, as well as 0.149 kg/kWh, 0.448 kg/kWh, and 0.252  kg/kWh, respectively, for FBD without APH.  The specific energy consumption (SEC), the specific electrical energy consumption (SEEC), and the specific thermal energy consumption (STEC) were varied from 1.749 kWh/kg to 5.076 kWh/kg, 0.090 kWh/kg to 2.872 kWh/kg, and 0.760 kWh/kg to 2.204 kWh/kg, with average values of 3.528 kWh/kg, 1.96 kWh/kg, and 1.532 kWh/kg, respectively for FBD with APH, as well as from 2.234 kWh/kg to 6.702 kWh/kg, 1.056 kWh/kg to 3.167 kWh/kg, and 1.179 kWh/kg to 3.536 kWh/kg, with average values of 4.391 kWh/kg, 2.075 kWh/kg, and 2.316 kWh/kg, respectively, for FBD without APH. The thermal ef?ciencies of the FBD with APH and  FBD without APH were varied between 12.4% and 37.93%, and 9.78% and 29.82%, resvectively, with average values of 20.78% and 16.61%. The thermal efficiency of FBD with APH was higher compared to FBD without APH.
4-LEVEL CAPACITOR-CLAMPED BOOST CONVERTER WITH HARD-SWITCHING AND SOFT-SWITCHING IMPLEMENTATIONS Kasiran, A.N.; Ponniran, Asmarashid; Bakar, A.A.; Yatim, M.H.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i1.pp288-299

Abstract

This paper presents parameters analysis of 4-level capacitor-clamped boost converter with hard-switching and soft-switching implementation. Principally, by considering the selected circuit structure of the 4-level capacitor-clamped boost converter and appropriate pulse width modulation (PWM) switching strategy, the overall converter volume able to be reduced. Specifically, phase-shifted of 120° of each switching signal is applied in the 4-level capacitor-clamped boost converter in order to increase the inductor current ripple frequency, thus the charging and discharging times of the inductor is reduced. Besides, volume of converters is greatly reduced if very high switching frequency is considered. However, it causes increasing of semiconductor losses and consequently the converter efficiency is affected. The results show that the efficiency of 2-level conventional boost converter and 4-level capacitor-clamped boost converter are 98.59% and 97.67%, respectively in hard-switching technique, and 99.31% and 98.15%, respectively in soft-switching technique. Therefore, by applying soft-switching technique, switching loss of the semiconductor devices is greatly minimized although high switching frequency is applied. In this study, passive lossless snubber circuit is selected for the soft-switching implementation in the 4-level capacitor-clamped boost converter. Based on the simulation results, the switching loss is approximately eliminated by applying soft-switching technique compared to the hard-switching technique implementation.
RESONANCE PROPAGATION AND ELIMINATION IN INTEGRATED AND ISLANDED MICROGRIDS Siva Reddy, K. V.; Moulali, SK.; Harinadha Reddy, K.; Rami Reddy, Ch.; RajannaRajanna, B. V.; Venkateswarlu, G.; Amarendra, Ch.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i3.pp1445-1456

Abstract

In this paper, a micro grid resonance propagation model is investigated. To actively mitigate the resonance using DG units, an enhanced DG unit control scheme that uses the concept of virtual impedance is proposed. It can be seen that a conventional voltage-controlled DG unit with an LC filter has a short-circuit feature at the chosen harmonic frequencies, whereas a current-controlled DG unit presents an open-circuit characteristic. The application of underground cables and shunt capacitor banks may introduce power distribution system resonances. This paper additionally focuses on developing a voltage-controlled DG unit-based active harmonic damping technique for grid-connected and islanding micro grid systems. An improved virtual impedance control method with a virtual damping resistor and a nonlinear virtual capacitor is proposed. The nonlinear virtual capacitor is used to compensate the harmonic dip on the grid-side inductor of a DG unit LCL filter. The virtual resistance is principally answerable for micro grid resonance damping. The effectiveness of the proposed damping method is examined using each a single DG unit and multiple parallel DG units.
THE RECOVERY OF ENERGY FROM A HYBRID SYSTEM TO IMPROVE THE PERFORMANCE OF A PHOTOVOLTAIC CELL Lekbir, Abdelhak; Kim Gan, Chin; Ab Ghani, Mohd Ruddin; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i3.pp957-964

Abstract

The main objective of this work is to study a photovoltaic/thermoelectric hybrid generator system, ranging from characterisation of thermoelectric (TE) and photovoltaic (PV) modules basic elements of thermal and PV energy conversion into electrical energy through necessary modelling steps. The bibliographic study allows TE and PV generation to be positioned in the current context, by presenting their history and evolution. In some sectors, this technology has already matured. For example, in the space sector, the scientific activity seems to show an acceleration in hybrid systems development in the solar field. This research field remains completely open, as evidenced by the multiplicity of technological solutions implemented. A significant part of this work has been to develop generic energy models of various modules (PV and thermal) for a multi-source generator design, based on experimental tests and existing technologies. In addition, a methodology for sizing optimisation of such generator was proposed by considering surface or volume criteria, number of thermoelectric generator (TEG) modules and temperature gradient.

Page 1 of 88 | Total Record : 879