cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota bandar lampung,
Lampung
INDONESIA
Jurnal Tanah Tropika
Published by Universitas Lampung
ISSN : 0852257X     EISSN : 20866682     DOI : -
Core Subject : Agriculture,
Published three times a year in January, May and September. Articles are written in English. Print ISSN 0852-257X, online ISSN 2086-6682. Formerly, the name of the journal was Jurnal TANAH TROPIKA (Journal of Tropical Soils) and then became online as Journal of Tropical Soils. Journal of Tropical Soils publishes all aspects in the original research of soil science (soil physic and soil conservation, soil mineralogy, soil chemistry and soil fertility, soil biology and soil biochemistry, soil genesis and classification, land survey and evaluation, land development and environment management), and related subjects in which using soil from tropical areas.
Arjuna Subject : -
Articles 322 Documents
Loss of Soil Organic Matter, Lignocellulose and Microbial Population in Oil Palm Plantations Located at Different Slopes Dewi, Rika Andriati Sukma; Indriyati, Lilik Tri; Sahari, Bandung; Sabiham, Supiandi
JOURNAL OF TROPICAL SOILS Vol 22, No 3: September 2017
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2017.v22i3.175-181

Abstract

Loss of soil organic matter can be caused by erosion triggered by soil compaction and high rainfall. The aims of  the study were to determine (1) the loss of soil organic matter, lignocellulose, and soil microbial population due to erosion and (2) the contribution of organic matter from oil palm fronds. In the current study, the erosion plots were built on the accessible inter-row (gawangan hidup) and inaccessible inter-row (gawangan mati) of oil palm plantations located at the slope of 6-10% and >10%. Soil organic matter, lignin, cellulose, and hemicellulose contents and total soil microbial populations were measured in the sediments collected from the erosion plots. The results showed that the loss of organic matter was higher in the accessible inter-row than that in the inaccessible inter-row. The addition of lignin, cellulose, and hemicellulose from oil palm fronds into the soil are 2.06 Mg ha-1 yr-1, 1.13 Mg ha-1 yr-1 and 1.02 Mg ha-1 yr-1, respectively. Total bacterial population in the sediments taken from the accessible inter-row was higher than that from the inaccessible inter-row, while the total fungal population in the sediments from the inaccessible inter-row was higher than that from the accessible inter-row.  
Isolation of Cellulolytic Bacteria from Peat Soils as Decomposer of Oil Palm Empty Fruit Bunch Gusmawartati, .; Agustian, .; Herviyanti, .; Jamsari, .
JOURNAL OF TROPICAL SOILS Vol 22, No 1: January 2017
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2017.v22i1.47-53

Abstract

The aim of the research was to find out potential strainsof cellulolytic bacteria isolated from two tropical peat soils and to studythe potency of the isolated bacteria to decompose oil palm empty fruit bunch (EFB). The research was carried out in two stages: (1) isolation of cellulolytic bacteria from peat soils and (2) testing the potency of isolated bacteria to decompose oil palm EFB. The cellulolytic bacteria were isolated from two peat soils, i.e. a natural peat soil (forest) and a cultivated peat soil (has been used as agriculture land). Isolation of cellulolytic bacteria was conducted by preparing a series dilution of culture solutions using a streak plate method in a carboxymethyl cellulose(CMC) selective medium.Isolates that were able to form clear zones surrounding their bacterial colony were further tested to study the potency of the isolates to decompose cellulose in oil palm EFB. The cellulolytic activity of the selected isolates were further determined via production of reducing sugars in an oil palm EFB liquid medium using Nelson-Somogyi method. The results showed that there are six isolates of cellulolytic bacteria that have been identified in two tropical peat soils used in the current study. Two isolates are identified in a natural peat soil (forest) and four isolates are identified in a cultivated peat soil. The isolates collected are identified as Bacillus sp., Pseudomonassp. and Staphylococcus sp. Among the isolates, an isolate of GS II-1 produces the highest concentration of reducing sugars, namely 0.1012 unitmL-1or 101 ppm, indicating that the isolate of GS II-1 is highly potential to decompose oil palm EFB. Therefore, the isolate of GS II-1 can be used as a decomposer in the bio-conversion processes of oil palm EFB.Keywords: isolation, bacteria, cellulolytic, oil palm empty fruit bunch (EFB), peat soil
Improvement of Soil Chemical Properties of Typic Hapludult After Application of Organic and Inorganic Fertilizers Mubarok, Syariful; Kusumiyati, Kusumiyati; Muhardiono, Iman; Yuniarti, Anni; Rosniawati, Santi; Suminar, Erni
JOURNAL OF TROPICAL SOILS Vol 22, No 3: September 2017
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2017.v22i3.131-137

Abstract

Tuberose (Polyanthes tuberosa L.) is a potential flowering plant that will be developed in Jatinangor, West Java, Indonesia. However, the characteristics of Typic Hapludult soil in Jatinangor , i.e. clay texture, acidic pH, and high amount of total-P but low in available-P cause the tuberose difficult to grow optimally. The aim of this study was to obtain the potential ratio of organic and inorganic fertilizer dosages for tuberose grown on Typic Hapludult. The combinations of organic and inorganic fertilizers with different ratios (0/0; 0/1; 1/0; 0.5/0.5; 0.5/1; 1/0.5; 1/1.5; 1.5/0; 1.5/0.5, and 1.5/) were applied. The application of the combination of organic and inorganic fertilizers showed positive effects on soil pH, available-P, total-P, and fresh weight of tuberose grown on Typic Hapludult. The application of 50% organic fertilizer + 50% inorganic fertilizer was an effective combination that was able to increase the fresh weight of tuberose up to 9240 g plant-1 or increasing the fresh weight by 39% in comparison to that in the control treatment (without fertilizer application). 
Physical Properties of Soils from Several Land Uses in a Tidal Swampland Area Applied with a Fork Irrigation System Susilawati, Ani; Nursyamsi, Dedi; Syahbuddin, Haris
JOURNAL OF TROPICAL SOILS Vol 22, No 3: September 2017
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2017.v22i3.167-174

Abstract

In Indonesia, tidal swampland is potential to be developed into agricultural land uses. Water management is the key success of farming on the tidal swampland. In the tidal swampland of Kalimantan, Indonesia, a fork irrigation system is widely applied in the water channels to supply irrigation water to the land. Besides irrigation, soil physical characteristics play an important role in controlling water availability for crops. The ability of soil to store water will determine the amount of available water that can be taken up by plants. This research aimed to determine the soil physical properties that are related to water availability in the soils from different land uses in a tidal swamp land area applied with a fork irrigation system. The experiment was conducted in dry season 2012, in Belawang, Barito Kuala district, South Kalimantan province. The soil samples were taken from four land uses, namely rice field, rubber plantation, mixed cropping, and unmanaged land. The soil physical properties, namely soil bulk density, particle density, porosity, texture, pF 1, pF 2, pF 2.54, pF 4, water content, total pore space, rapid drainage pores, slow drainage pores, available water, groundwater level were measured. In addition, the mineralogical properties of the soils were measured as well. The results showed that the physical properties of the soils taken from different land use varied, however, the change of the land use did not cause changes in the soil mineralogical properties. The mineralogy of the soils from different land uses are relatively the same, namely: quartz, illite, and chlorite. 
Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe Kilowasid, Laode Muhammad Harjoni; Syamsudin, Tati Suryati; Susilo, Franciscus Xaverius; Sulistyawati, Endah
JOURNAL OF TROPICAL SOILS Vol 17, No 2: May 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i2.173-180

Abstract

Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L.) plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of 39 genera of soil fauna as ecosystem engineers were found during thesestudies. Thirty five genera belong to the group of Formicidae (ants), three genera of Isoptera (termites), and onegenera of Oligochaeta (earthworms). Ecological diversity variation within ecosystem engineers was detected withSimpson indices for dominance and evenness. The highest diversity of ecosystem engineers was in the young ageof plantation. This study reinforces the importance biotic interaction which contributed to the distribution andabundance within soil fauna community as ecosystem engineers in small-holder cocoa plantation.[How to Cite: Kilowasid LMH, TS Syamsudin, FX Susilo and E Sulistyawati. 2012. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe. J Trop Soils 17 (2): 173-180. doi: 10.5400/jts.2012.17.2.173] [Permalink/DOI: www.dx.doi.org/10.5400/jts.2012.17.2.173]
ANDISOLS FROM TONDANO AREA, NORTH SULAWESI: PROPERTIES AND CLASSIFICATION Hikmatullah, .
Journal of Tropical Soils Vol 13, No 1: January 2008
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2008.v13i1.77-85

Abstract

Three pedons of Andisol (TN-1, TN-2 and TN-3) developed from young volcanic materials of the Lokon, Soputan, and Lengkoan volcanoes respectively in the Tondano area, North Sulawesi, were studied in the field, and 18 soil samples were analysed in the laboratory for physical, chemical, and mineralogical properties, and they were classified according to Keys to Soil Taxonomy 2003. The results indicated that all the pedons meet the requirements of the andic soil properties, and thus classified into Andisol order. Pedon TN-1 meets bulk density < 0.90 g cm-3, P retention > 85%, and (Alo + 0.5Feo) content extracted by ammonium oxalate > 2.0%, while pedons TN-2 and TN-3 meet the requirements of P retention > 25%, (Alo + 0.5Feo) content > 0.4%, volcanic glass content > 5%, and value of [%(Alo+0.5Feo) x 15.625 + (% volcanic glass)] is > 36.25. Composition of sand mineral fraction indicate that pedon TN-1 and TN-3 show andesitic to basaltic volcanic materials, whereas pedon TN-2 with high olivin content belongs to basaltic volcanic materials. Clay minerals of all the pedons was dominated by hydrated-halloysite with few of disordered-kaolinite, which indicated a little weathering of the pedons. The pedons were classified at family level as Typic Hapludand, medial, amorphic, isothermic (TN-1), Humic Udivitrand, ashy, amorphic, isothermic (TN-2), and Alfic Hapludand, medial, glassy, isothermic (TN-3).
Soil Chemical and Biological Characteristics for Diagnostic the Potency of Acid Dry Land for Soybean Extensification Prihastuti, .; Sudaryono, .
JOURNAL OF TROPICAL SOILS Vol 18, No 1: January 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i1.17-24

Abstract

The descriptive explored study was conducted in districts Bumi Nabung, Sari Bakti, Seputih Banyak and Rumbia, Central Lampung, Indonesia. The parameters observed consisted of chemical and biological aspects of soil, which directly affected plant growth. This activity was carried out as preliminary studies for the diagnosis of soybean extensification on acid dry land. The results showed that all locations observed were less suitable for soybean development, indicated by low pH values (4.35 – 6.00), nutrient contents (N < 0.1% and C-organic < 2.0%), and low soil microbial populations. Population of bacteria was 17 × 103 – 29 × 104 CFU g-1 soil and fungi was 21 × 101 – 63 ×102 CFU g-1 soil of soils. Beneficial microbe types included non-symbiotic nitrogen-fixing bacteria (with the capability to fix the Nitrogen around 0.16 – 1.53 mM 100 ml-1 medium h-1), phosphate solubilizing bacteria (with the value index 1.22 – 6.25) and arbuscular mycorrhizal fungi (with root colonization by 70.50 – 90.33% and the number of sporeswere 49 – 175 spores g-1 soil). This less suitable land can be improved to become suitable for developing soybean by using innovative technology. Soil biological and chemical improvement technology through liming and amelioration as well as organic and bio-fertilizers applications were required for soybeans extensification on acid dry land.[How to Cite: Prihastuti and Sudaryono. 2013. Soil Chemical and Biological Characteristics for Diagnostic the Potency of Acid Dry Land for Soybean Extensification. J Trop Soils, 18 (1) : 17-24. doi: 10.5400/jts.2013.18.1.17][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.17]
EXTREME HIGH YIELD OF TROPICAL RICE GROWN WITHOUT FERTILIZER ON ACID SULFATE SOIL IN SOUTH KALIMANTAN, INDONESIA Purnomo, Erry; Hashidoko, Yasuyuki; Hasegawa, Toshihiro; Osaki, Mitsuru
Journal of Tropical Soils Vol 15, No 1: January 2010
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2010.v15i1.33-38

Abstract

Extreme High Yield of Tropical Rice Grown Without Fertilizer on Acid Sulfate Soil in South Kalimantan, Indonesia (E Purnomo, Y Hashidoko, T Hasegawa and M Osaki): Local rice arieties are commonly grown by the farmers located in acid sulfate soil area of South Kalimantan. In South Kalimantan, more than 100 local rice varieties can be found. In 1999, a farmer found one hill (with 5 tillers) rice plant near a canal, later called Padi Panjang. The rice had panicle length of 50 cm. The panicle length of common local rice varieties are 25 cm. Since the finding, the farmer multiplied the seed for 3 years to get a reasonable amount of seeds for nearby farmers to use. In 2004, there were 25 farmers grow the Padi Panjang by themselves. Their paddocks are widely spread out in Aluh-Aluh and Gambut districts. We take this opportunity to investigate yield variation of the Padi Panjang that may be affected by soil properties variability. Ten paddocks out of the 25 paddock were selected. At harvest time (in July-August), we measured the rice yield and collected soil sample from the 10 paddocks. We found that the soil condition in the selected paddocks were marginally suitable for growing improved rice. Without fertilizer, however, the rice yield varied from 3.21 to 8.09 Mg ha-1. We also observed that the rice yield variations associated with tillers number. We did not find any correlation between rice yields with some selected soil properties, except it was observed that the tillers number was negatively correlated with soil electrical conductivity (EC). The extreme yield of Padi Panjang might be explained the involvement of N fixing bacteria and P solubilizing bacteria, large rooting system and the ability of Padi Panjang root in modifying the rhizosphere soil.
Characteristics of Soil Fauna Communities and Habitat in Small- Holder Cocoa Plantation in South Konawe Kilowasid, Laode Muhammad Harjoni; Syamsudin, Tati Suryati; Susilo, Franciscus Xaverius; Sulistyawati, Endah; Syaf, Hasbullah
JOURNAL OF TROPICAL SOILS Vol 18, No 2: May 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i2.149-159

Abstract

The composition of the soil fauna community have played an important role in regulating decomposition and nutrient cycling in agro-ecosystems (include cocoa plantation). Changes in food availability and conditions in the soil habitat can affected the abundance and diversity of soil fauna. This study aimed: (i) to analyze the pattern of changes in soil fauna community composition and characteristic of soil habitat based on the age increasing of cocoa plantation, and (ii) to identify taxa of soil fauna and factors of soil habitat which differentiate among the cocoa plantations. Sampling of soil, roots and soil fauna was conducted from cocoa plantation aged 4, 5, 7, 10, and 16years. Difference in composition of the soil fauna community between ages of the cocoa plantation is significant. Profile of soil habitats was differ significantly between the cocoa plantations, except 5 and 7 years aged. A group of soil fauna has relatively limited in its movement, and sensitively to changes in temperature, soil acidity, and the availability of food and nitrogen are taxa differentiating between soil fauna communities. Soil physic-chemical conditions that affect metabolic activity, movement, and the availability of food for soil fauna is a  distinguishing factor of the characteristics of the soil habitat between different ages of smallholder cocoa plantations.Keywords: Abundance, arthropod, composition, nematodes[How to Cite: Kilowasid LMH, TS Syamsudin, F X Susilo, E Sulistyawati and H Syaf. 2013.Characteristics of Soil Fauna Communities and Habitat in Small-Holder Cocoa Plantation in South Konawe. J Trop Soils 18 (2): 149-159. Doi: 10.5400/jts.2013.18.2.149][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.2.149]REFERENCESAdejuyigbe CO, G Tian and GO Adeoye.1999. Soil microarthropod populations under natural and planted fallows in Southwestern Nigeria. Agroforest Sys 47: 263-272.Adl SM. 2008. Enchytraeids. In: Carter MR and Gregorich EG (eds.) Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. pp. 445-453. Aeckerman IL, R Costantio, HG Gauch, J Lehman, SJ Riha and ECM Fernandes. 2009. Termite (insecta: isoptera) species composition in a primary rain forest and agroforests in Central Amazonia. Biotropica 41: 226-233. Allen AP, JF Gillooly and JH Brown. 2005. Linking the global cycle to individual metabolism. Func Ecol 19: 202-213.Bardgett R. 2005. The biology of soil: A community and ecosystem approach, Oxford University Press Inc., New York. 242p. Beisel JN, P Usseglio-Polatera, V Bachmann and JC Moreteau. 2003. A comparative analysis of evennes index sensitivity. Inte Rev Hydrobiol 88: 3-15. Belay-Tedla A, X Zhou, B Su, S Wan and Y Lou. 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of tallgrass prairie soils in the US Great Plains subjected to experimental warming and clipping. Soil Biol Biochem 41: 110-116.Blagodatsky S and P Smith. 2012. Soil physics meet soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem 47: 78-92.Bloem J, G Lebbink, KB Zwart, LA Bouwman, SLGE Burgers, JA de Vos and PC de Ruiter .1994. Dynamics of microorganisms, microbivores and nitrogen mineralization in winter wheat fields under conventional and integrated management. Agric Ecosys Environ 51: 129-143.Bloemers GF, M Hodda, PJD Lambshead, JH Lawton and FR Wanless. 1997. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 111: 575-582.Bongers T and H Ferris. 1999. Nematode community structure as a bioindicator in environmental monitoring. TREE 14: 224-228.Bos MM, P Höhn, Shahabuddin, B Biiche, B Damayanti, I Steffan-Dewenter and T Tscharntke. 2007.  Insect diversity responses to forest conversion and agroforestry management. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, and Bidin A (eds.) The Stability of Tropical Rainforest Margins, Linking Ecological, Economic, and Social Constraints of Land Use and Conservation. Springer Verlag, Berlin, pp. 279-296.Camargo JA. 2008. Revisiting the relation between species diversity and information theory. Acta Biotheor 56: 275-283. Christensen KA. 1990. Insecta collembolan. In: DL Dindal (ed) Soil Biology Guide. John Willey & Sons, Singapore, pp. 965-995.Directorate General of Esatate, Agricultural Ministry, RI. 2012. Area and Production by Category of Producers. http://ditjenbun.deptan.go.id/cigraph/index.php/viewstat/komoditiutama/4-Kakao. Accessed on 6 June 2012.Delabie JHC, B Jahyny, IC do Nascimento, CSF Mariano, S Lacau, S Campiolo, SM Philpott and M Leponce. 2007. Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic forest fauna of Southern Bahia, Brazil. Biodivers Conserv 16: 2359-2384.Doran JW, MR Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15: 3-11.Evizal R, Tohari, ID Prijambada, J Widada and D Widianto. 2012. Soil bacterial diversity and productivity of coffe-shade tree agro-ecosystem. J Trop Soils 17: 181-187.Forge TA and J Kimpinski. 2008. Nematodes. In: MR Carter and EG Gregorich (eds). Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, pp. 415-425.Gerson U, RL Smilet and R Ochoa. 2003. Mites (acari) for pest control. Blackwell Science, UK. Hairiah K, H Sulistyani, D Suprayogo, Widianto, P Purnomosidhi, RH Widodo and M van Noordwijk. 2006. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For Ecol Manage 224: 45-57.Hanel L. 2001. Succession of soil nematodes in pine forests on coal-mining sands near Cottbus, Germany. Appl Soil Ecol 16: 23 -34.Hopkins DW and RW Grogorich. 2005. Carbon as a subtrate for soil organisms. In: RD Bardgett,  MB Usher and DW Hopkins (eds). Biological diversity and function in soils. Cambridge University Press, New York, pp. 57-83.Hemmsbergen DA, MP Berg, M Loreau, JR van Hal, JH Faber and HA Verhoef. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306: 1019-1020.   Hunt HW and DH Wall. 2002. Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biol 8: 33-50.Isaac ME, AM Gordon, N Thevathasan, SK Oppong and J Quashie-Sam. 2005. Temporal changes in soil carbon and nitrogen in West African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agroforest Systs 65: 23-31.Kardol P, TM Bezemer, A van der Wal and WH van der Putten. 2005. Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biol  Conserv  126: 317-327.Kasprzak K. 1993. Methods for fixing and preserving soil animals. In: M Górny and L Grüm (eds). Methods in Soil Zoology. Elsevier, Amsterdam, pp.321-345.Kibblewhite MG, K Ritz and MJ Swift. 2008. Soil health in agricultural systems. Phil Trans R Soc B 363: 685-701.Kilowasid LMH, TS Syamsudin, FX Susilo and E Sulistyawati. 2012. Ecological diversity of soil fauna as ecosystem engineers in small-holder cocoa plantation in South Konawe. J Trop Soils 17: 173-180.  Kummerow J, Kummerow M and WS Da Silva. 1982. Fine-root growth dynamics in cacao (Theobroma cacao). Plant Soil 65: 193-201.Korhonen L, KT Korhonen, P Stenberg, M Maltamo and M Rautiainen. 2007. Local models for forest canopy cover with beta regression, Silva Fennica 4: 671-685.Lavelle P and AV Spain. 2001.  Soil ecology. Kluwer Academic Publisher, New York.Lawton JH, DE Bignell, GF Bloemers, P Eggleton and ME Hodda. 1996. Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodiver Conserv 5: 261-273.Lukac M and DL Godbold. 2011. Soil Ecology in Northern Forests: a Belowground View of a Changing World. Cambridge Univerasity Press, New York.Marhaning AR, AAS Mills and SM Adl. 2009. Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41: 137-147.Meserve PL, DA Kelt, B Milstead and JR Guitierrez. 2003. Thirteen years of shifting top-down and bottom-up control. BioScience  53: 633-646.Moco MKS, EF Gama-Rodrigues, AC Gama-Rodrigues, RCR Machado, and VC Baligar. 2009. Soil and litter fauna of cocoa agroforestry systems in Bahia, Brazil. Agroforest Syst 76: 127-138.  Moco MKS, EF Gama-Rodrigues, AC Gama-Rodrigues, RCR Machado and VC Baligar. 2010. Relationship between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the South of Bahia, Brazil. Appl Soil Ecol 46: 347-354.  Munoz F and J Beer. 2001. Fine root dynamics of shaded cacao plantations in Costa Rica. Agroforest Syst 51: 119-130.Nielsen UL. E. Ayres, D.H Wall and R.D Bardgett. 2010. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur J Soil Sci 62: 105-116.Panesar TS and VG Marshall. 2005. Monograph of soil nematodes from Coastal Douglas-Fir Forests in British Columbia. Royal Roads University, Canada. Available at: http://www.royalroads.net/nematodes. Peck SL, B Macquaid and CL Campbell. 1998. Using ant species (Hymenoptera: Formicidae) as a biological indicator of Agroecosystem condition. Environ Entomol 27: 1102-1110.Pradhan GB and MC Dash. 1987. Distribution and population dynamics of soil nematodes in a tropical forest ecosystem from Sambalpur, India. Proc Indian Acad Sci (Anim Sci) 96: 395-402.Rovira P and VR Vallejo. 2002. Labile and recalcitrant pool of carbon and nitrogen in organic matter decomposing at different depth in soil: an acid hydrolysis approach. Geoderma 107: 109-141.Ruf A, L Beck, P Dreher, K Hund-Rinke, J Römbke and J Spelda. 2003. A biological classification concept for the assessment for soil quality:”biological soil classification scheme” (BBSK), Agric Ecosyst Environ 98: 260-271.Saha S. 2010. Soil functions and diversity in organic and conventional farming. In: Lichtfouse E (eds). Sosiology, organic farming, climate change and soil science. Sustainable Agriculture Review 3, Springer Sciene + BussinesMedia B.V. pp. 275-301. Sanchez-Moreno S, S Smukler, H Ferris, AT O’Geen and LE Jackson. 2008. Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm. Biol Fertil Soils 44: 727-744.Sileshi G and PL Mafongoya. 2007. Quantity and quality of organic inputs from coppicing leguminous trees influence abundance of soil macrofauna in maize crops in eastern Zambia, Biol Fertil Soils  43: 333-340.Shahabuddin. 2010. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae) across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Schinner F, R Öhlinger, E Kandeler and K Margesin. 1996. Methods in soil biology. Springer, Berlin. 426p.  Sharma G, R Sharma and E Sharma. 2009. Impact of stand age on soil C, N and P dynamics in a 40-year chronosequence of alder-cardamom agroforestry atands of the Sikkim Himalaya, Pedobiologia. doi:10.1016/j.pedobi.2009.01.003.Sharon R, D Degani and M Warburg. 2001. Comparing the Soil macro-fauna in two oak-wood forests: does community structure differ under similar ambient conditions. Pedobiologia 45: 355-366.Smiley GL and J Kroschel. 2008. Temporal change in carbon stock of cocoa-gliricidia agroforest in Central Sulawesi, Indonesia. Agroforest Syst 73:  219-231. Smiley GL and J Kroschel. 2010. Yield development and nutrient dynamics in cocoa-gliricidia agroforest of Central Sulawesi, Indonesia. Agroforest Syst 78:  97-144.Susilo FX, AM Neutel, M van Noordwijk, K Hairiah, G Brown and MJ Swift. 2004. Soil biodiversity and food webs. In: M van Noordwijk, G Cadisch and CK Ong. Below-Ground Interactions in Tropical Agroecosystems: Concept and Models with Multiple Plant Components, CAB International Publishing, pp. 285-308.Syaf H. 2010. Analisis sumberdaya lahan tanaman kakao di Kabupaten Kolaka Provinsi Sulawesi Tenggara [Disertasi]. Universitas Padjajaran. (in Indonesian).Todd TC, TO Powers and PG Mullin. 2006. Sentinel nematodes of land-use change and restoration in tallgrass prairie. J Nematol 38: 20-27.Urzelai A, AJ Hernández and J Pastor. 2000. Biotic indices baded on soil nematode communities for assessing soil quality in terrestrial ecosystems. Sci Tot Environ 247: 253-261. van Eekeren N, H de Boer, J Bloem, C Schouten, M Rutgers, R de Goede and L Brussaard. 2009. soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers. Biol Fertil Soils 45: 595-608.  Voroney RP. 2007. The soil habitat. In: Paul EA (ed.). Soil Microbiology, Ecology, and Biochemistry. Elsevier, Amsterdam, pp.25-49.Wardle DA, RD Bardgett, JN Klironomos, H Setälä, WH van der Putten and DH Wall. 2004. Ecological linkage between aboveground and below ground biota. Science 304: 1629-1633.Widyastuti R. 2006. Feeding rate of soil animals in different ecosystem in Pati, Indonesia. Hayati 13: 119-123.Wilke BM. 2005. Determination of chemical and physical soil properties. In: R Margisen and F Schinner (eds). Manual for Soil Analysis –Monitoring and Assessing  Soil Bioremediation. Springer-Verlag Berlin Heidelberg, pp.47-94.Winter JP and VM Behan-Pelletier. 2008. Microarthropods. In: Carter MR and Gregorich EG (eds). Soil sampling and methods of analysis. Canadian Society of Soil Science, pp. 399-414.Yadav RS, BL Yadav, BR Chhipa, SK Dhyani and M Ram. 2011. Soil biological properties under different tree based traditional agroforestry systems in a semi-arid region of Rajasthan, India. Agroforest Syst 81: 195-202. doi: 10.1007/s10457-010-9277-z.Yan S, AN Singh, S Fu, C Liao, S Wang, Y Li, Y Cui, and L Hu. 2012. A soil index for assessing soil quality. Soil Biol Biochem 47: 158-165.Zar JH. 1999. Biostatistical analysis. Prentice Hall, New Jersey. 663 pZheng D, Jr ER Hunt and SW Running. 1993. A daily soil temperature model based on air temperature and precipitation for continental applications. Clim Res 2: 183-191.Zornoza R, J Mataix-Solera, C Guerrero, V Arcenegui, J Mataix-Beneyto and I Gómez. 2008. validating the effectiveness and sensitivity of two soil quality indices based on natural forest soils under mediterranean conditions. Soil Biol Biochem 40: 2079-2087.
LAND SUITABILITY CRITERIA FOR INTENSIVELY MANAGED CAVENDISH BANANA CROP IN WAY KAMBAS EAST LAMPUNG, INDONESIA Ansyori, .; Sudarsono, .; Poerwanto, Roedhy; Darmawan, .
Journal of Tropical Soils Vol 15, No 2: May 2010
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2010.v15i2.%p

Abstract

Land Suitability Criteria for Intensively Managed  Cavendish Banana Crop in Way Kambas East Lampung, Indonesia (Ansyori, Sudarsono, R Poerwanto, and Darmawan): Banana as one of the pre-eminent products of horticultural crop has a very important role in the growth of agricultural sector.  The research aimed to study the land characteristics which influence the Cavendish banana crop yield and proposing the land suitability classification criteria for the land utilization type of Cavendish banana crop with intensive management which has been tested based on the production rate in the field.  For this purpose, there were 36 observation land units specifically designed by considering factors such as soil subgroups, slopes, land utilization types, and land productivity levels.  At each observation land unit, the land utilization types and land characteristics were indentified.  The relation between land characteristics and production was tested with correlation and regression analysis.  The results of some statistical tests were contrasted and then selected as the basis to develop the land suitability classification criteria for Cavendish banana crop which was intensively managed.  The research findings indicated that the banana crop yield levels were significantly influenced and determined by the land characteristics of soil bulk density, cation exchange capacity, soil permeability, total porosity, exchangeable sodium percentage, soil textural class, and soil erodibility.

Page 1 of 33 | Total Record : 322