cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue " Vol 3, No 2 (2014): December 2014" : 12 Documents clear
PEMANFAATAN LIMBAH SEKAM PADI MENJADI SILIKA GEL Handayani, Prima Astuti; Nurjanah, Eko; Rengga, Wara Dyah Pita
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3698

Abstract

Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahanCH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl. Rice hull ash (RHA) is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH) and siloxan (Si-O-Si) group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59,0196 Å. While the silica gel with the addition of CH3COOH has a surface area 9.685 m2/g, a total pore volume 0,02118 cc/g, and average pore size 43,7357 Å. Silica gel with the addition of CH3COOHhas the ability to absorb humidity better than silica gel with the addition of HCl.
PEMBUATAN KARBON AKTIF DARI KULIT JERUK KEPROK (Citrus reticulata) UNTUK ADSORBSI PEWARNA REMAZOL BRILLIANT BLUE Erprihana, Asriningtyas Ajeng; Hartanto, Dhoni
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3699

Abstract

Limbah kulit jeruk keprok (Citrus reticulata) sering dijumpai di industri pembuatan berbagai macam minuman seperti jus, sirup, dan sari buah. Limbah kulit jeruk ini hanya akan dibuang begitu saja dengan jumlah banyak, dan pada akhirnya limbah ini akan mencemari lingkungan. Salah satu upaya peningkatan nilai ekonomis limbah kulit jeruk dapat dilakukan dengan mengolahnya menjadi karbon aktif. Penelitian ini bertujuan untuk menghasilkan karbon aktif dari kulit jeruk keprok dengan aktivasi kimia, luas permukaan, serta mengetahui kemampuannya dalam mengadsorpsi zat warna Remazol Brilliant Blue. Kulit jeruk yang telah dibersihkan dari kotoran, dikeringkan menggunakan oven pada suhu 120oC selama 3 jam. Aktivator yang digunakan dalam penelitian ini adalah H3PO4 dengan rasio massa aktivator : massa karbon 1:1. Aktivasi dilakukan pada temperatur 600oC selama 1 jam, kulit jeruk kemudian dicuci dengan aquades dan dikeringkan menggunakan oven pada suhu 150oC selama 6 jam. Setelah itu, dilakukan uji bilangan iodin terhadap sampel hasil penelitian. Adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif kulit jeruk dilakukan dengan variasi waktu kontak dan massa karbon aktif untuk mencari kondisi adsorpsi optimum. Kondisi optimum adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif pada kulit jeruk keprok pada waktu kontak 30 menit dengan massa karbon aktif 1 gram. Karbon aktif dari kulit jeruk keprok memiliki luas permukaan karbon aktif sebesar 529,17 mg/g berdasarkan daya serapnya terhadap larutan iodin. Orange peel (Citrus reticulate) waste is often found in industrial manufacturing various kinds of beverages such as juice, syrup, fruit juice. Orange peel waste is just be thrown away with the lot number, and in the end of this waste will pollute the environment. One of the efforts to increase the economic value of orange peel waste by using the process which convert waste into activated carbon. This research aims are to produce activated carbon from orange peel with chemical activation, to determine the surface area, and its ability to adsorb Remazol Brilliant Blue dyes. Orangel peel that have washed, dried in oven at 120oC for 3 hours. H3PO4 is activating agent that used in this research with mass ratio activating agent : mass carbon 1:1. Activation is conduct at 600oC for 1 hour, orange peel then washed with bidistiled water, and dried in oven at 150oC for 6 hours. Iodine number was used to analysis the results. Adsorption of Remazol Brilliant Blue dyes by orange peel activated carbon conduct at variation contact time and mass activated carbon to find optimum condition. Optimum condition adsorption of Remazol Brilliant Blue dyes by orange peel actvated carbon isreached at 30 minutes contact time with mass activated carbon 1 gram. Activated carbon from orange peel has surface area 529,17 m g/gr based aqueous iodine adsorption.
SINTESIS BIOKOAGULAN BERBASIS KITOSAN DARI KULIT UDANG UNTUK PENGOLAHAN AIR SUNGAI YANG TERCEMAR LIMBAH INDUSTRI JAMU DENGAN KANDUNGAN PADATAN TERSUSPENSI TINGGI Ihsani, Shofia Lathifa; Widyastuti, Catur Rini
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3700

Abstract

Koagulan sintetik telah umum digunakan untuk penjernihan air. Meskipun koagulan tersebut kelihatan lebih praktis dalam penggunaan dan mudah diperoleh tetapi pemakaian koagulan sintetik yang berlebih justru akan menimbulkan efek yang tidak baik bagi lingkungan maupun kesehatan karena koagulan jenis ini tidak mudah terbiodegradasi. Eksplorasi terhadap material alami, yang lebih ramah lingkungan namun mempunyai potensi yang baik perlu terus dikaji. Keunggulan kitosan sebagai koagulan adalah sifatnya tidak beracun, mudah mengalami biodegradasi, tidak mencemari lingkungan, dan mudah bereaksi dengan zat-zat organik lainnya seperti protein. Dengan demikian diharapkan bahwa koagulan yang diperoleh dari kulit udang adalah bahan yang ramah lingkungan dan mempunyai nilai tambah yang tinggi. Pada tugas akhir ini, isolasi kitosan dilakukan melalui tiga tahap yaitu deproteinasi, demineralisasi dan deasetilasi. Deproteinasi dilakukan dengan melarutkan kulit udang menggunakan NaOH 5% (b/v) pada perbandingan 1:10 (gr/mL) dan direfluks selama 1 jam pada suhu 650C. Sedangkan demineralisasi dilakukan dengan melarutkan serbuk hasil deproteinasi dengan HCl 1M dengan perbandingan 1:15 (g/mL) dan direfluks selama 2 jam pada suhu 650C. Serbuk kitin hasil demineralisasi selanjutnya diproses lebih lanjut dengan mereaksikan kitin menggunakan NaOH 50%(b/v) dengan perbandingan 1:15 (gr/mL) dan direfluks selama 4 jam pada suhu 1000C. Kitosan yang diperoleh diaplikasikan sebagai biokoagulan untuk menjernihkan air sungai yang tercemar limbah industri. Variabel yang diteliti adalah konsentrasi kitosan 0,01 %, 0,4%, 1%, 1,5%, 2%. Kemudian sampel limbah yang sudah diolah diuji pH dan tingkat kekeruhannya. Hasil proses deproteinasi kulit udang menghasilkan rendemen 55,55%, sedangkan proses demineralisasi menghasilkan rendemen 32,65%. Pada proses deasetilasi kitin dari kulit udang menghasilkan rendemen sebesar 69,25%, sedangkan rendemen kitosan yang diperoleh sebanyak 12,466%. Dari hasil uji FTIR diketahui derajat deasetilasi kitin dan kitosan berturut-turut adalah 27,7462 % dan 80,064 %. Dari hasil uji air limbah yang sudah diolah diketahui bahwa penurunan optimum diperoleh dari penambahan kitosan konsentrasi 0,4% dengan penurunan kekeruhan sebanyak 86,07%. The synthetic coagulant has been commonly used for purifying water. Although this coagulant seems more practise to use and easy to find, its applications affect the environment since they are not biodegradable. Therefore, the new natural materials has great potential to be explored. Chitosan has been known as a great multi-function material. The advantages of chitosan as coagulant relates to its characteristic that is not toxic, easy to biodegrade, not polute the environment, and easy to react with organic substances such as protein. Chitin and Chitosan are carbohydrate compounds produced by seafood waste, especially from shrimps, crabs, squids and oyster. The isolation of Chitosan was done in two steps. They were deproteinization and demineralization. Deproteinization was done by dissolving the shrimp’s shells using NaOH solution 5%(w/v) with ratio of 1:10 (g/mL) and refluxed for an hour in 650C. Whereas the demineralization was done by dissolving the deproteinized powder using HCl 1 M 1:15 (g/mL) and refkuxed for two hours in 650C. Then, the demineralized chitin was further processed to chitosan by deacetylation using NaOH 50% (w/v) with the ratio of 1:15 (g/mL) and refluxed for four hours in 1000C. Then, chitosan powder was used as coagulant for purifying the water of river that is contaminated with industrial waste. The examined variables were chitosan concentration of 0.01%, 0.4%, 1%, 1.5%, and 2%. The treated waste was then analized by measuring the pH and the degree of turbidity. The yield of chitin from deproteination, demineralization, and deacetylation were 55.55%, 32,65%, and 69.25% respectively. While the yield of chitosan was 12.47%. The FTIR analysis showed the degree of deacetylation of chitin and chitosan were 27.75% and 80.06%, respectively. The coagulant made of chitosan could reduce the turbidity of the water up to 86.07% with the chitosan concentration of 0.4%.
PENGARUH PENAMBAHAN EM4 (Effective Microorganism-4) PADA PEMBUATAN BIOGAS DARI ECENG GONDOK DAN RUMEN SAPI Megawati, Megawati
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3696

Abstract

Eceng gondok (Eichornia crassipes) merupakan tanaman yang menjadi limbah perairan dan keberadaannya belum banyak dimanfaatkan. Kandungan selulosa, hemiselulosa, dan lignin di dalamnya dapat dimanfaatkan menjadi biogas melalui proses fermentasi. Penelitian ini mengkaji pengaruh EM4 (Effective Microorganism- 4) terhadap massa, nilai kalor, dan kecepatan pembentukan biogas dari eceng gondok. Percobaan dilakukan dalam anaerobic digester berukuran 4 liter, bahan baku yang digunakan adalah eceng gondok, rumen sapi, dan air dengan variabel penambahan EM4 sebesar 1% dan 0%. Fermentasi dilakukan secara batch dengan pengukuran gas (temperatur, tekanan, dan massa) setiap 7 hari sekali sampai hari ke-35. Sebelum proses fermentasi, dilakukan pengujian terhadap rasio C/N campuran bahan baku. Pembakaran gas dilakukan untuk membuktikan gas yang didapat mengandung metana. Hasil Penelitian menunjukkan bahwa rasio C/N untuk variabel dengan penambahan EM4 1% sebesar 5,33 dan rasio C/N untuk variabel dengan penambahan EM4 0% sebesar 7. Jadi, penambahan EM4 dapat menurunkan rasio C/N. Sementara itu, hasil fermentasinya memperlihatkan bahwa EM4 memperkecil produksi biogas meskipun proses pembentukannya cepat. Massa total biogas yang didapat pada variabel EM4 1% sebesar 1,1 g dan variabel EM4 0% sebesar 1,55 g. Tekananbiogas mengalami fluktuasi (pada variabel EM4 1% sebesar 35,6 cmH2O, sedangkan pada variabel EM4 0% sebesar 40,6 cmH2O). Berdasarkan simulasi menggunakan chemical process simulator software, diketahui heating value biogas sebesar 39.180 kJ/kg. Water hyacinth (Eichornia crassipes) is a plant that becomes waste and its existence has not been widely used. Content of cellulose, hemicellulose, and lignin in it can be converted into biogas through a process of fermentation. Study examines the effect of EM4 (Effective Microorganism-4) on the mass, heating value, and the rate of formation of biogas from water hyacinth. An experiments were performed in anaerobic digesters size of 4 liters, the raw material used is water hyacinth, cows rumen, and water with variable of EM4 addition of 1% and 0%. Fermentation was carried out in batch condition with gas measurement (temperature, pressure, and mass) every 7 days until the 35th day. Before fermentation, the C/N ratio of raw material mixture was analyzed. The gas was burnt to prove that the obtained gas containing methane. Results showed that the C/N ratio for the variable with the addition EM4 1% is 5.33 and C/N ratio for the variable with the addition EM4 0% is 7. Thus, the addition of EM4 can reduce C/N ratio. Despite the formation process is rapid, the results showed that EM4 reduce the biogas production. Total mass of biogas obtained at variableEM4 1% is 1.1 g and variable EM4 0% is 1,55 g. Biogas pressure is fluctuated (at variable EM4 1% is 35.6 cmH2O, EM4 0% is 40.6 cmH2O). Based on simulation using the chemical process simulator software, it is known that biogas heating value is 39,180 kJ/kg.
SINTESIS ADSORBEN BERBASIS LIGNOSELULOSA DARI KAYU RANDU (Ceiba pentandraL.) UNTUK MENJERAP Pb(II) DALAM LIMBAH CAIR ARTIFISIAL Astuti, Widi; Susilowati, Nova
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3697

Abstract

Pada penelitian ini, limbah kayu randu digunakan sebagai adsorben untuk menjerap ion Pb (II) dalam larutan. Kayu randu yang telah direaksikan dengan NaOH dikarakterisasi dan diuji kemampuan adsorpsinya. Hasil penelitian menunjukkan bahwa pada serbuk kayu hasil reaksi dengan NaOH terlihat adanya pori dengan bentuk dan ukuran yang lebih seragam dengan luas permukaan spesifik 7,420 m2/g dan diameter pori 0.3 nm. Adsorpsi mencapai kesetimbangan pada 120 menit dengan kemampuan penjerapan sebesar 2,47 mg/g. Adsorpsi mengikuti model isotherm Freundlich dengan nilai tetapan KF sebesar 1,986 dan n sebesar 0,649.In this research, cotton wood waste was used to adsorb Pb(II) ion in the solution. Sodium hydroxide treated cotton wood was characterized its spesific surface area, pore size, morphology and functional group. Furthermore, it was tested its adsorption ability to adsorb ion Pb(II). The result show that the treated cotton wood has uniform pores. Its specific surface area and pore diameter are 7.420 m2/g and 0.3 nm, respectively. The equilibrium was achieved in 120 minutes. Adsorption ability of the adsorben is 2.47 mg/g. In the adsorption, Freundlich isotherm model fit with the experimental data with the value of KF and n are 1.986 and 0.649, respectively.
Production of Furfural from Corncobs Agricultural Waste by Acid Hydrolysis at Atmospheric Pressure Widyastuti, Catur Rini; Istiqomah, Istiqomah
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.5765

Abstract

Corncob is the renewable agricultural biomass which has great potency to be developed into useful chemical. It can be used as raw material for producing furfural as it contains high concentration of pentosan up to 32%. Furfural is a useful chemical intermediate which may be further processed into other valuable products, such as furan, furoic acid, and furfuryl alcohol. Furfural is also an important chemical solvent. The aim of this research was to optimize the production process and maximize the yield of furfural. The research was conducted in three steps which included pretreatment of raw material, hydrolysis, and distillation. Corncobs was ground to form powder with a maximum particle size of 150 mesh and then hydrolysed in a stirred reactor using H2SO4 at temperature variation of 80oC, 90oC, and 100oC for 2 hr, 3 hr, and 4 hr at atmospheric pressure. The hydrolysate was filtrated and the filtrate was added by toluene and being kept for 12 hours. The product was separated by distillation at 110oC. The result showed the highest yield of furfural from corncobs was 31% which obtained by acid hydrolysis at 100oC for 4 hours. Analysis using GC-MS identified furfural in the product and several impurities, such as toluene, 1,5-heptadien-3-yne, and benzaldehyde.
SINTESIS ADSORBEN BERBASIS LIGNOSELULOSA DARI KAYU RANDU (Ceiba pentandraL.) UNTUK MENJERAP Pb(II) DALAM LIMBAH CAIR ARTIFISIAL Astuti, Widi; Susilowati, Nova
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3697

Abstract

Pada penelitian ini, limbah kayu randu digunakan sebagai adsorben untuk menjerap ion Pb (II) dalam larutan. Kayu randu yang telah direaksikan dengan NaOH dikarakterisasi dan diuji kemampuan adsorpsinya. Hasil penelitian menunjukkan bahwa pada serbuk kayu hasil reaksi dengan NaOH terlihat adanya pori dengan bentuk dan ukuran yang lebih seragam dengan luas permukaan spesifik 7,420 m2/g dan diameter pori 0.3 nm. Adsorpsi mencapai kesetimbangan pada 120 menit dengan kemampuan penjerapan sebesar 2,47 mg/g. Adsorpsi mengikuti model isotherm Freundlich dengan nilai tetapan KF sebesar 1,986 dan n sebesar 0,649.In this research, cotton wood waste was used to adsorb Pb(II) ion in the solution. Sodium hydroxide treated cotton wood was characterized its spesific surface area, pore size, morphology and functional group. Furthermore, it was tested its adsorption ability to adsorb ion Pb(II). The result show that the treated cotton wood has uniform pores. Its specific surface area and pore diameter are 7.420 m2/g and 0.3 nm, respectively. The equilibrium was achieved in 120 minutes. Adsorption ability of the adsorben is 2.47 mg/g. In the adsorption, Freundlich isotherm model fit with the experimental data with the value of KF and n are 1.986 and 0.649, respectively.
PEMANFAATAN LIMBAH SEKAM PADI MENJADI SILIKA GEL Handayani, Prima Astuti; Nurjanah, Eko; Rengga, Wara Dyah Pita
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3698

Abstract

Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 . Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357. Silika gel dengan penambahanCH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl.Rice hull ash (RHA) is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH) and siloxan (Si-O-Si) group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59,0196 . While the silica gel with the addition of CH3COOH has a surface area 9.685 m2/g, a total pore volume 0,02118 cc/g, and average pore size 43,7357 . Silica gel with the addition of CH3COOHhas the ability to absorb humidity better than silica gel with the addition of HCl.
Production of Furfural from Corncobs Agricultural Waste by Acid Hydrolysis at Atmospheric Pressure Widyastuti, Catur Rini; Istiqomah, Istiqomah
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.5765

Abstract

Corncob is the renewable agricultural biomass which has great potency to be developed into useful chemical. It can be used as raw material for producing furfural as it contains high concentration of pentosan up to 32%. Furfural is a useful chemical intermediate which may be further processed into other valuable products, such as furan, furoic acid, and furfuryl alcohol. Furfural is also an important chemical solvent. The aim of this research was to optimize the production process and maximize the yield of furfural. The research was conducted in three steps which included pretreatment of raw material, hydrolysis, and distillation. Corncobs was ground to form powder with a maximum particle size of 150 mesh and then hydrolysed in a stirred reactor using H2SO4 at temperature variation of 80oC, 90oC, and 100oC for 2 hr, 3 hr, and 4 hr at atmospheric pressure. The hydrolysate was filtrated and the filtrate was added by toluene and being kept for 12 hours. The product was separated by distillation at 110oC. The result showed the highest yield of furfural from corncobs was 31% which obtained by acid hydrolysis at 100oC for 4 hours. Analysis using GC-MS identified furfural in the product and several impurities, such as toluene, 1,5-heptadien-3-yne, and benzaldehyde.
PEMBUATAN KARBON AKTIF DARI KULIT JERUK KEPROK (Citrus reticulata) UNTUK ADSORBSI PEWARNA REMAZOL BRILLIANT BLUE Erprihana, Asriningtyas Ajeng; Hartanto, Dhoni
Jurnal Bahan Alam Terbarukan Vol 3, No 2 (2014): December 2014
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i2.3699

Abstract

Limbah kulit jeruk keprok (Citrus reticulata) sering dijumpai di industri pembuatan berbagai macam minuman seperti jus, sirup, dan sari buah. Limbah kulit jeruk ini hanya akan dibuang begitu saja dengan jumlah banyak, dan pada akhirnya limbah ini akan mencemari lingkungan. Salah satu upaya peningkatan nilai ekonomis limbah kulit jeruk dapat dilakukan dengan mengolahnya menjadi karbon aktif. Penelitian ini bertujuan untuk menghasilkan karbon aktif dari kulit jeruk keprok dengan aktivasi kimia, luas permukaan, serta mengetahui kemampuannya dalam mengadsorpsi zat warna Remazol Brilliant Blue. Kulit jeruk yang telah dibersihkan dari kotoran, dikeringkan menggunakan oven pada suhu 120oC selama 3 jam. Aktivator yang digunakan dalam penelitian ini adalah H3PO4 dengan rasio massa aktivator : massa karbon 1:1. Aktivasi dilakukan pada temperatur 600oC selama 1 jam, kulit jeruk kemudian dicuci dengan aquades dan dikeringkan menggunakan oven pada suhu 150oC selama 6 jam. Setelah itu, dilakukan uji bilangan iodin terhadap sampel hasil penelitian. Adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif kulit jeruk dilakukan dengan variasi waktu kontak dan massa karbon aktif untuk mencari kondisi adsorpsi optimum. Kondisi optimum adsorpsi zat warna Remazol Brilliant Blue oleh karbon aktif pada kulit jeruk keprok pada waktu kontak 30 menit dengan massa karbon aktif 1 gram. Karbon aktif dari kulit jeruk keprok memiliki luas permukaan karbon aktif sebesar 529,17 mg/g berdasarkan daya serapnya terhadap larutan iodin.Orange peel (Citrus reticulate) waste is often found in industrial manufacturing various kinds of beverages such as juice, syrup, fruit juice. Orange peel waste is just be thrown away with the lot number, and in the end of this waste will pollute the environment. One of the efforts to increase the economic value of orange peel waste by using the process which convert waste into activated carbon. This research aims are to produce activated carbon from orange peel with chemical activation, to determine the surface area, and its ability to adsorb Remazol Brilliant Blue dyes. Orangel peel that have washed, dried in oven at 120oC for 3 hours. H3PO4 is activating agent that used in this research with mass ratio activating agent : mass carbon 1:1. Activation is conduct at 600oC for 1 hour, orange peel then washed with bidistiled water, and dried in oven at 150oC for 6 hours. Iodine number was used to analysis the results. Adsorption of Remazol Brilliant Blue dyes by orange peel activated carbon conduct at variation contact time and mass activated carbon to find optimum condition. Optimum condition adsorption of Remazol Brilliant Blue dyes by orange peel actvated carbon isreached at 30 minutes contact time with mass activated carbon 1 gram. Activated carbon from orange peel has surface area 529,17 m g/gr based aqueous iodine adsorption.

Page 1 of 2 | Total Record : 12