cover
Contact Name
Agus Aktawan
Contact Email
agus.aktawan@che.uad.ac.id
Phone
-
Journal Mail Official
chemica@che.uad.ac.id
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
CHEMICA Jurnal Teknik Kimia
ISSN : 2355875X     EISSN : 23558776     DOI : -
CHEMICA Jurnal Teknik Kimia ISSN, 2355-875X (print) 2355-8776 (online) is a journal that publishes manuscripts or scientific papers in Chemical Engineering. The scope of this journal covers chemical reaction techniques, separation, optimization, process control, process system engineering, waste treatment, food and material technology. Journals are published in print and online twice a year, in June and December by Chemical Engineering Program, Faculty of Industrial Technology, Universitas Ahmad Dahlan Yogyakarta.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue " Vol 5, No 2 (2018): Desember 2018" : 5 Documents clear
Simulasi Optimasi Reactive Distillation untuk Membuat Bioaditif (Triasetin) dari Gliserol dan Asam Asetat dengan Katalis Asam Sulfat Menggunakan Software Aspen Plus Prasongko, Chici Wardiani; Ramdani, Fitri; Mufrodi, Zahrul
CHEMICA: Jurnal Teknik Kimia Vol 5, No 2 (2018): Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (707.707 KB) | DOI: 10.26555/chemica.v5i2.13000

Abstract

Biodiesel is one product to avoid the energy crisis in the front mass. Oil from plants such as oil palm, coconut, jatropha, or used cooking oil produces glycerol as a by-product of about 10 wt% of biodiesel products. The excess amount of glycerol must be converted into high-value products. Because if glycerol is not processed properly, the price of glycerol in the market will drop and it will become a waste that can pollute the environment. One of the derivatives of glycerol which has a high value is triacetin which is a good bio-additive as an anti-knock substance in vehicles. From this study, the synthesis of triacetin is from glycerol and acetic acid using sulfuric acid as a catalyst using the Reactive Distillation (RD) process. RD can be used as a reaction place and at the same time as a product refining place. RD can separate water with acetic acid as a distillate product for about 75% on the bottom product. The bottom product of RD will produce triacetin and other derivatives which will be separated again using the second column to obtain high purity triacetin. The purpose of this study is to simulate using Aspen Plus software to model the optimization of RD with a continuous system. The feed capacity of 96% glycerol was 4336.4550 kg/hour and 98% acetate acid was 8659.79 kg/hour in the liquid phase with the help of a sulfuric acid catalyst of 115.4592 kg/hour. The feed enters continuously into RD with a temperature of 115 °C and a pressure of 1 atm. The simulation results show that triacetin products can reach 99% as many as 10150.8561 kg/hour with glycerol conversion of 99.8% and 30 stages in RD. Besides that, the simulation results can also show the flow rate of each stage and the dimensions of RD.
Gasifikasi Biomassa Serbuk Gergaji Kayu Mahoni (Swietenia Mahagoni) untuk Menghasilkan Bahan Bakar Gas sebagai Sumber Energi Terbarukan Nurwidayati, Astri; Sulastri, Putri Ayu; Ardiyati, Destya; Aktawan, Agus
CHEMICA: Jurnal Teknik Kimia Vol 5, No 2 (2018): Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (252.322 KB) | DOI: 10.26555/chemica.v5i2.13046

Abstract

Energy cannot be separated from human life. Increased energy needs for human life that are contradictory to existing fossil fuel sources can cause an energy crisis. Biomass is an alternative energy source that is environmentally friendly, economical and renewable. Biomass energy is derived from plants such as wood, rice hulls, corn head, etc. The process of converting biomass into energy can be done in several ways. They are combustion, pyrolysis, and gasification. Gasification is a technology for converting solid materials into syngas (CO, H2, and CH4) which can be used as a fuel. One of the gasifiers that have been developed is a downdraft system. The solid material we use in this study is a mahogany wood powder which has a cellulose content of up to 46.8%. Through this research, we can find out the effect of the variable of raw materials weight towards the time of flame, the quality of the fire, and the amount of gas produced. The gas produced was tested visually by lighting the fire and instrumentally tested using a tool called Chromatography Gas to determine the composition of the gas. The biggest yield syngas is 70,71% with the 18,000 seconds gas release time on the variable of mahogany wood powder weight of 3500 grams. The highest CH4 and CO Gas concentrations were 1,868% and 15.902% on the variable of 3,500 gram mahogany powder weight. While the highest concentration of H2 gas is 20.965% produced with the variable of 2,500 gram mahogany powder weight. The results of this study indicate that the more feed in the gasifier, the greater the number and composition of syngas and the longer the gas release time.
Produksi Bio-Oil dari Rumput Gajah dengan Fast Pyrolysis menggunakan Circulating Fluidized Bed Reactor (CFBr) dengan Kapasitas 45 Kg/H Mufandi, Ilham; Treedet, W.; Singbua, P.; Suntivarakorn, R.
CHEMICA: Jurnal Teknik Kimia Vol 5, No 2 (2018): Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (194.941 KB) | DOI: 10.26555/chemica.v5i2.12484

Abstract

The objective of this work was to produce the renewable liquid fuel (Bio-oil) form Napier grass by fast pyrolysis in a circulating fluidized bed reactor. The experiment was conducted to improve the bio-oil production (pyrolysis oil) using the condenser. Circulating fluidized bed reactor had a height of 4.5 m, sand as bed material with a diameter 249 nm and Napier grass as the raw material for bio-oil production. The parameter in this work compared with previous research. The experiment was carried out at different temperature ranging from ,  dan ; feed rate biomass at 45 kg/h and a superficial velocity 7 m/s. The experimental result shown that the maximum yield was 39.60 % at pyrolysis temperature of 480  as the best temperature. While the bio-char production and Non condensable gas (NCG) was at 10.67% and 49.73%. Respectively, these results indicated that the condenser can be improve the bio-oil production yield in the system. Furthermore, the condenser process has been shown to have a direct effect on the bio-oil yield.
Pembuatan Kolom Monolit Mixed-Mode untuk Pemisahan Fenol dalam Kromatografi Cair Sistem Kapiler Rahayu, Aster; Fajri, Joni Aldilla; Lim, Lee Wah; Takeuchi, Toyohide
CHEMICA: Jurnal Teknik Kimia Vol 5, No 2 (2018): Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.261 KB) | DOI: 10.26555/chemica.v5i2.12282

Abstract

A Mixed-Mode monolithic column prepared from Pentaeritrytol Tetraacrylate (PETRA) and Ethylene dimathacrylate (EDMA) was investigated and used in capillary liquid chromatography. The polymer composition was optimized by varying percentage ratio of monomer and porogens. Column A with rasio 35/65 (monomer/porogen) showed the optimum ratio. The polymerization of acrylic groups were conducted by in-situ preparation in capillary fused silica. Three phenol compounds were separated using this monolithic column using acetonitrile 100% as eluent. Monolith PETRA-EDMA also could work to separate polar and non-polar compound simultaneously by HILIC mode using acetonitrile 90% as eluent. The morphology surface of monolith was observed by scanning electron microscope (SEM) and mechanical stability in term of pressure drop was observed as well.
Uji Aktivitas Adsoben Karbon Aktif Tempurung Kelapa Termodifikasi dengan Active Site Fe2O3 Amelia, Shinta; Mufrodi, Zahrul
CHEMICA: Jurnal Teknik Kimia Vol 5, No 2 (2018): Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (353.552 KB) | DOI: 10.26555/chemica.v5i2.12185

Abstract

The use of dyes in the textile industry has a negative impact, namely water pollution if the waste is discharged directly into the river or not treated properly. Liquid waste from the textile industry generally still contains dyes that are harmful to living things and the environment. In this study the dye adsorption method was used by using modified activated carbon from the coconut shell with the addition of the active site Fe2O3. Characterization and activity testing of iron / porous oxide activated carbon adsorbent will be carried out. The type of porous activated carbon used is coconut shell carbon with micropore characters. The stages of this study consisted of the impregnation process of iron oxide on porous carbon, the methylene blue adsorption process and the characterization of the resulting adsorbent. Based on the research that has been done, it can be concluded that the adsorption of Fe2O3 / coconut shell activated carbon is very effectively applied for the absorption of dye wastewater. The adsorption capacity of methylene blue increased with increasing concentrations of loading of active sites of Fe and the percentage of adsorption capacity in the 180 minute reaction was 89.8% with the loading of iron oxide / coconut shell adsorbent 2%. In addition, from the results of the adsorbent activity test with variations in the mass addition of the adsorbent it can be concluded that the mass increase of the adsorbent significantly affected the yield of blue methylene adsorption.

Page 1 of 1 | Total Record : 5