Claim Missing Document
Check
Articles

PREDIKSI PRODUKSI SUSU SEGAR DI INDONESIA MENGGUNAKAN ALGORITMA BACKPROPAGATION Saragih, Jonas Rayandi; Hartama, Dedy; Wanto, Anjar
JURNAL ILMIAH INFORMATIKA Vol 8 No 01 (2020): Jurnal Ilmiah Informatika (JIF)
Publisher : Teknik Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (473.143 KB) | DOI: 10.33884/jif.v8i1.1847

Abstract

Milk is a white liquid produced from female mammals that contain carbohydrates that are useful for humans. Based on data from the Indonesian Statistics Agency, milk productivity in Indonesia from 2012 to 2018 experienced an unstable curve. Therefore this research was conducted to predict and find out the level of development of milk productivity in Indonesia for the following years, so that companies that use milk have a reference to continue to strive to increase milk productivity in Indonesia to remain stable in order to meet the needs of the community and minimize milk imports. This algorithm used is backpropagation neural network. This algorithm is able to predict good data especially data that is sustainable in a certain period of time. to simplify this research the author uses the Matlab 2011 application. To facilitate writers, authors use 5 architectural model, namely 5-9-1 = 94%, 5-12-1 = 88%, 5-14-1 = 88%, 5-15-1 = 94%, 5-17-1 = 94 %. So we get the best architectural model using the architectural mode 5-15-1 with an accuracy rate of 94% with MSE = 0,000999842. Finally, this model is good enough to predict fresh milk production by province in Indonesia
PREDIKSI JUMLAH PENJUALAN PRODUK DI PT RAMAYANA PEMATANGSIANTAR MENGGUNAKAN METODE JST BACKPROPAGATION Syafiq, Muhammad; Hartama, Dedy; Kirana, Ika Okta; Gunawan, Indra; Wanto, Anjar
JURIKOM (Jurnal Riset Komputer) Vol 7, No 1 (2020): Februari 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (256.554 KB) | DOI: 10.30865/jurikom.v7i1.1963

Abstract

Product is the one of thing which more important in the business especially for the retail industry. Ramayana is the one exact place for selling retail products such as clothing, shoes, or slipper. On 2012-2018, the number of sales of products in Ramayana experience curve up and down. That thing can cause profit and lose for Ramayana, to avoid that thing need to be held a prediction for the next months so that Ramayana side can know what will happen in the next months in selling it?s product and can take a step for more effective in selling it?s products. The data which used in this research is the data report monthly product sales of shoes & sandal sourced from Ramayana from 2012 until 2018. This research uses the Backpropagation neural network method using 5 architectures namely 3-26-1, 3-31-1, 3-35-1, 3-39-1 and 3-40-1. The best architecture is 3-35-1 with an accuracy rate of 92%. The results obtained are the results of the prediction of the number of sales for 2019, 2020, 2021 and 2022
Analisa Visualisasi Data Akademik Menggunakan Tableau Big Data Hartama, Dedy
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 3 (2018): Edisi Juli
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v3i0.65

Abstract

This research explains the benefits of data analysis by visualizing Big data in performing optimization in the academic management environment. The data used is academic information system database that related with student status. In this study the authors use Tableau tools to perform data analysis based on the number of students worksheet, student status, student name table and generate student dashboard data. The results of the analysis obtained by using visualization in bemtuk management graph is very fast and optimize data processing so mengatahui the development of academic database situation.
Penerapan Data Mining Pada Prediksi Kelayakan Pemohon Kredit Mobil Dengan K-Medoids Clustering Fransiskus Tarigan, Indra; Hartama, Dedy; Suhada; Saifullah; Saputra Saragih, Ilham
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 1 No. 4 (2021): Februari 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

K-Medoids is included in partitioning clustering, where each data must be included in a certain cluster and it is possible for each data included in a particular cluster at one stage of the process, at the next stage it moves to another cluster. The definition of credit is the ability to carry out a purchase or make a loan with a promise, payment will be made at the agreed period. The definition of credit is the ability to carry out a purchase or make a loan with a promise, payment will be made at the agreed time. According to a survey conducted by Gaikindo (Association of Motor Vehicle Industries) in 2015, car purchases on credit reached 85%. This is due to decreased purchasing power, thus encouraging more consumers to buy cars using installments, aka credit. Therefore it is necessary to measure the feasibility of a customer in crediting a car. The goal is to determine the customer's ability to credit a car so that there are no losses on both parties, and reduce credit errors that have not been optimal in permitting credit cars. The policies taken must of course have relevance and be supported by the knowledge that comes from the available data and Data Mining is one of the good methods in providing a clustering pattern model and good for grouping. It is hoped that this research can provide benefits to companies in reducing errors in making decisions on credit applicants at the credit evaluation stage which greatly affects the company's cash flow.
PENERAPAN C 4.5 UNTUK MENENTUKAN CALON SUAMI TERBAIK DALAM PERNIKAHAN PADA KANTOR KUA SIANTAR MARTOBA PEMATANGSIANTAR Hawani, Siti; Windarto, Agus Perdana; Solikhun, Solikhun; Hartama, Dedy
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 1 (2016): Edisi Juli
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v1i1.10

Abstract

Penentuan Calon Suami terbaik merupakan salah satu cara untuk mengetahui kriteria-kriteria apa yang diperlukan dalam penentuan calon suami terbaik dalam pernikahan. Seorang calon suami harus memenuhi beberapa kriteria tertentu untuk dapat dinyatakan layak. Penelitihan ini bertujuan untuk mengklasifikasikan dan memprediksi layak dan tidak layak calon suami untuk dinyatakan menjadi calon suami terbaik dalam pernikahan dengan menggunakan Metode C4.5. Algoritma C4.5 merupakan algoritma yang digunakan untuk membentuk pohon keputusan. Pohon keputusan merupakan metode klasifikasi dan prediksi yang sangat kuat dan terkenal.
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN GURU TERBAIK PADA SMK MARIA GORETTI PEMATANGSIANTAR MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW) Hutasoit, Rotua Sihombing; Windarto, Agus Perdana; Hartama, Dedy; Solikhun, Solikhun
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 1 (2016): Edisi Juli
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v1i1.9

Abstract

Memiliki guru, staf tenaga pengajar yang profesional merupakan sebuah keharusan bagi sekolah dalam melaksanakan proses pendidikan yang bermutu, demikian halnya dengan SMK Maria Goretti Pematangsiantar. Untuk itu, sekolah selalu mendorong peningkatan profesionalitas guru dengan cara memantau kerja guru dalam mengimplementasikan tugasnya sehingga dapat mencapai standar kompetensi yang telah ditentukan. Sistem pendukung keputusan secara umum didefenisikan sebagai sebuah sistem yang mampu menghasilkan pemecahan maupun penanganan masalah. Sistem pendukung keputusan tidak dimaksudkan untuk menggantikan peran pengambil keputusan, tapi untuk membantu dan mendukung pengambil keputusan. Dalam peranan sistem pendukung keputusan dalam konteks keseluruhan sistem informasi ditujukan untuk memperbaiki kinerja melalui aplikasi teknologi informasi serta menentukan pendekatan yang digunakan dalam proses pengambilan keputusan, sampai mengevaluasi pemilihan interaktif. Salah satu metode yang sering digunakan dalam sistem pendukung keputusan adalah metode Simple Additive Weighting (SAW). Metode Simple Additive Weighting (SAW) ini dipilih karena dapat menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif terbaik dari sejumlah alternatif yang ada. Dalam hal ini alternatif yang dimaksud adalah penentuan guru terbaik pada SMK Maria Goretti Pematangsiantar menggunakan metode SAW (simple additive weighting). Dengan metode perangkingan tersebut diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih maksimal.
SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN APARATUR SIPIL NEGARA TERBAIK PADA KANTOR CAMAT SIANTAR UTARA DENGAN METODE ELECTRE Purba, Notryady; Hartama, Dedy; J, Jalaluddin; S, Solikhun; Anggraini, Fitri
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 1, No 1 (2020): Edisi Januari
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (513.189 KB) | DOI: 10.30645/kesatria.v1i1.19

Abstract

Siantar Utara District Office is one of the sub-districts in the Pematangsiantar city, North Sumatra Province. Through this sub-district office, residents can take care of various forms of licensing. At the subdistrict office also routinely held awards to employees which are held every three months which were previously counted on the excel application. The calculation process determines the best employee that the writer does, namely with the Excel application and uses the web-based ELECTRE method. Based on the final results obtained from the calculation results in both the excel application and the web-based application, alternative A1 with Ekl = 4 value, alternative A2 with Ekl = 4 value, alternative A3 with Ekl = 0 value, alternative A4 with Ekl = 2 value , alternative A5 with the value Ek = 2 From this decision support system, the final result is obtained with alternative A1 with the value Ekl = 4 as the best employee.
PENERAPAN JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI GIZI BALITA PADA PUSKESMAS SIANTAR UTARA KOTA PEMATANGSIANTAR Simbolon, Daniel Arbanus; Hartama, Dedy; Anggraini, Fitri
Brahmana : Jurnal Penerapan Kecerdasan Buatan Vol 1, No 1 (2019): Edisi Desember
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (285.981 KB) | DOI: 10.30645/brahmana.v1i1.7

Abstract

The North Siantar Health Center's Puskesmas is a health sector engaged in public health sciences, at the Office of the North Siantar Sub-District of Pematangsiantar City conducted research with the Nutritional research variables under five months of age. attacked by various diseases ranging from external diseases and internal diseases. Artificial Neural Network is a method of grouping and separating data whose working principle is the same as Human Neural Networks, this Science processes systems and structures so that they become information.
The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm Pradipta, Asro; Hartama, Dedy; Wanto, Anjar; Saifullah, Saifullah; Jalaluddin, Jalaluddin
IJISTECH (International Journal Of Information System & Technology) Vol 3, No 1 (2019): November
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (207.903 KB) | DOI: 10.30645/ijistech.v3i1.30

Abstract

Graduating on time is one element of higher education accreditation assessment. In the Strata 1 level, students are declared to graduate on time if they can complete their studies <= eight semesters or four years. BAN-PT sets a timely graduation standard of >= 50%. If the standard is not met, it will reduce the value of accreditation. These problems encourage the Universitas Simalungun Pematangsiantar to conduct evaluations and strategic steps in an effort to increase student graduation rates so that the targets of BAN-PT can be achieved. For this reason it is necessary to know in advance the pattern of students who tend not to graduate on time. In this study, C4.5 Algorithm is proposed to predict student graduation. This algorithm will process student profile datasets totaling 150 data. This dataset has a graduation status label. The value of the label is categorical, that is, right and late. The features or attributes used, namely the name of the student, gender, student status, GPA. The results of the C4.5 algorithm are in the form of a decision tree model that is very easy to analyze. In fact, even by ordinary people. This model will map the patterns of students who have the potential to graduate on time and late.
Increasing Prediction Accuracy with the Backpropagation Algorithm (Case Study: Pematangsiantar City Rainfall) Prayoga, Yogi; Hartama, Dedy; Jalaluddin, Jalaluddin; Sumarno, Sumarno; Nasution, Zulaini Masuro
IJISTECH (International Journal Of Information System & Technology) Vol 3, No 1 (2019): November
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.83 KB) | DOI: 10.30645/ijistech.v3i1.27

Abstract

The more advanced science and technology from various disciplines, currently rainfall can be predicted by carrying out various empirical approaches, one of which is by using Artificial Neural Networks (ANN). This study aims to apply ANN with backpropogation algorithm in predicting rainfall. The research data used is BPS data of the transfer city. The results of the study state that of the 6 models (4-5-1, 4-10-1, 4-25-1, 4-5-10-1, 4-5-25-1 and 4-5-50-1) architecture that was trained and tested using Matlab 6.1 application software, the results showed that the 4-5-25-1 architectural model was the best model for making predictions with 75% truth accuracy, Training MSE 0.001004582, Testing MSE 0.021882712 and Epoch 59,076 . It is expected that research can provide input to the government, especially BMKG Pematangsiantar city in predicting Rainfall based on computer science so as to improve the quality of services in the fields of Meteorology, Climatology, Air Quality and Geophysics in accordance with applicable laws and regulations.
Co-Authors Agus Perdana Windarto Amri, Muhammad Aliyul Anjelita, Mawaddah Astria, Cici Ayunda, Yuli Septya B. Tambunan, Holpan Torang Batubara, Dinda Nabila Butarbutar, Nelson Damanik, Alan Boy Sandy Damanik, Bahrudi Efendi Damanik, Irfan Sudahri Desiana, Eva Dewi, Rafiqa Dwitri, Nayuni Eka Irawan Fani, Handri Al Fauziah, F Fitri Anggraini, Fitri Fransiskus Tarigan, Indra Gultom, Devi Handika, Rudi Hawani, Siti Herman Mawengkang Heru Satria Tambunan, Heru Satria Hutabarat, Luvita Yolanda Hutasoit, Rotua Sihombing Ilmi R.H Zer, P.P.P.A.N.W Fikrul Indra Gunawan Irnanda, Khairunnisa Fanny Irnanda, Khairunnissa Fanny Jalaluddin J Jalaluddin Jalaluddin Kirana, Ika Okta Kurniandisyah, Primatama Lubis, M. Ridwan Luvia, Yuni Sara Muhammad Ridwan Lubis, Muhammad Ridwan MUHAMMAD SYAFIQ Muhammad Zarlis, Muhammad Nasution, Muhammad Ade Dharamawan Nasution, Zulaini Masuro Ningse, Weni Ratnasari Orktapia Ningsih, Desi Ayu Okprana, Harly Okta Kirana, Ika Parlina, Iin Poningsih Pradipta, Asro Pratama, Zepri Prayoga, Sandi Prayoga, Yogi Purba, Notryady Putra, Jaka R.H Zer, Fikrul Ilmi R.H Zer, P.P.P.A.N.W Fikrul Ilmi R.H.Zer, Fikrul Ilmi S, Solikhun Safii, M Safii, M. Saifullah Saifullah Saifullah Saputra Saragih, Ilham Saputra, Widodo Saragih, Irfan Christian Saragih, Jonas Rayandi Sari, Hanifah Urbach Sawaluddin Sawaluddin, Sawaluddin Serdano, Akbar Siahaan, Septri Wanti Sianipar, Kristin Daya Rohani Sihombing, Irma Agustika Simbolon, Daniel Arbanus Sinaga, Dewinta Marthadinata Sindi, Sukma Siregar, Marina Sitohang, Evani Solikhun Solikhun, Solikhun Suhada Sumarno Sumarno Sumarno Sundari Retno Andani, Sundari Retno Tampubolon, Hotma Dame Tampubolon, Jose Andreas Utami, Tania Dian Tri Vivi Wahdini, Sri Wanto, Anjar Widia Sembiring, Rahmad Winanjaya, Riki Zuhri, azhar Fadilah