Claim Missing Document
Check
Articles

Found 31 Documents
Search

Pengaruh Penambahan Nanokatalis MnFe2O4 Terhadap Proses Pirolisis Sampah Plastik HDPE Wati, Rita Fajar; Wardana, ING; Winarto, Winarto; Sukarni, Sukarni; Puspitasari, Poppy
Rekayasa Mesin Vol 9, No 3 (2018)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (177.71 KB) | DOI: 10.21776/ub.jrm.2018.009.03.9

Abstract

The effects of MnFe2O4 nanocatalyst addition toward HDPE plastic waste pyrolysis have been investigated by performing experiments on METTLER TOLEDE TGA DSC1 Simultaneous Thermal Analyzer at heating rates of 10oC/min by nitrogen and temperatures range from room temperature to 1000oC. The results of pyrolysis showed that the main polymer components of HDPE plastic waste, both, with and without MnFe2O4 nanocatalyst addition degraded in one stage. The MnFe2O4 nanocatalyst addition increases the maximum mass loss rate of HDPE plastic waste pyrolysis, however, it increase the degradation of the initial temperature.
Physical Properties and Compressive Strength of Zinc Oxide Nanopowder as a Potential Dental Amalgam Material Qosim, Nanang; Murdanto, Putut; Puspitasari, Poppy
International Journal of Advances in Applied Sciences Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.404 KB) | DOI: 10.11591/ijaas.v7.i2.pp97-101

Abstract

In this study, the application of nanotechnology was applied in the dentistry field, especially in the innovation of dental amalgam material. To date, mercury (Hg) has been used widely as dental amalgam material with consideration of the cheap price, ease of use, and good mechanical strength. However, last few years, many problems have been faced in the dentistry field due to the use of mercury. Hence, new material is needed as an innovation to eliminate the mercury from dental amalgam composition. This research was conducted to analyze the physical properties and compressive strength of zinc oxide (ZnO) nanopowder as a potential dental amalgam material. The physical properties such as morphology and dimensions were analyzed by SEM and XRD. Further, the compression test was conducted by using hydraulic press machine. The results showed that the ZnO nanopowder analyzed has the particle size of 14.34 nm with the morphology classified as nanorods type. On the compression load of 500 kg, the average of ZnO green density is 3.170 g/cm3. This value experienced the increase of 4.763% when the load was set to 1000 kg, and 7.539% at 2000 kg. The dwelling time also took the same effect. At 30 seconds, the average of ZnO green density is 3.260 g/cm3. This value experienced the increase of 0.583% at 60 seconds and 3.098% at 90 seconds.
ANALYSIS OF STRENGTH OF GLASS FIBRE COMPOSITE LEAF SPRING USING FINITE ELEMENT METHOD Andoko, Andoko; Puspitasari, Poppy; Permanasari, Avita Ayu
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2635.282 KB) | DOI: 10.17977/um016v1i12017p001

Abstract

Leaf spring, as one of the main components of the suspension system, serves the function of absorbing road shocks and any wheel vibrations, preventing them from being transmitted directly to the vehicle body. Moreover, it can increase the tire traction as well as support the weight of the vehicle and various kinds of external forces. Various studies on the use of composite materials for leaf springs have shown that the strength of composite leaf spring is similar to steel leaf spring with the same load carrying capacity. However, the composite leaf spring has the added advantage of being more lightweight. In fact, composite materials have been preferable for many purposes not only because of its properties but also its lightweight structure and cost effectiveness. The analysis process was carried out using the finite element method by means of ANSYS software to display the output of the analysis being performed. After the output is known, the amount of voltage in conventional, mounted, and progressive spring can be determined. Based on the data analysis, we concluded that conventional straight leaf springs produced a maximum voltage of 653.13 MPa and maximum deflection of 4367.1 mm. The results of the analysis using the finite element method showed that conventional leaf springs (both straight and not) are considered as the most effective model of leaf spring in terms of the power generated.
DEVELOPMENT OF A FERRITE-BASED ELECTROMAGNETIC WAVE DETECTOR Zakariah, Muhammad Hanish; Puspitasari, Poppy; Ahmad, Nur Aliza
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (834.09 KB) | DOI: 10.17977/um016v1i22017p061

Abstract

Direct detection of hydrocarbon by an active source using electromagnetic (EM) wave termed Sea Bed Logging (SBL) has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL). Ferrite bar and copper rings in various diameters were used as detector 1 (D1). For Detector 2 (D2), toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter  copper ring and 1.099 ? when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p) value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.
Analisis Sifat Fisik dan Kompresibilitas Nanopowder Zinc Oxide (ZnO) sebagai Alternatif Material Amalgam Qosim, Nanang; Murdanto, Putut; Puspitasari, Poppy
Rekayasa Mesin Vol 9, No 1 (2018)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (449.208 KB) | DOI: 10.21776/ub.jrm.2018.009.01.2

Abstract

Severe effects of the mercury use on health as an amalgam material have required an alternative material in order to eliminate it from amalgam composition. This research was conducted to analyze the physical properties and compressibility of ZnO nanopowder as an alternative amalgam material. The physical properties including morphology, dimensions, and the atomic ratio were analyzed by SEM, XRD-XRF and EDX. Further, the compressibility was conducted by using hydraulic press machine. The results showed that ZnO has particle size of 14.34 nm with morphology classified as nanorods. In the compressibility test, both the variation of compression loadings and holding time have brought an effect on the significant increase of ZnO nanopowder density.
THE STRENGTH OF MOULDING SAND CONSISTING OF A MIXTURE OF BENTONITE, TAPIOCA FLOUR, AND SAGO FLOUR AS A NEW BINDER FORMULA TO IMPROVE THE QUALITY OF AL-SI CAST ALLOY Andoko, Andoko; Nurmalasari, Riana; Mizar, M. Alfian; Wulandari, Retno; Puspitasari, Poppy; Permanasari, Avita Ayu
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.133 KB) | DOI: 10.17977/um016v1i12017p032

Abstract

The major factors determining the quality of sand casting products are the base sand and the composition of the sand mould and the binding material. In the foundry industry, the most commonly used binder for creating sand moulds is bentonite. However, the price of bentonite is likely to keep rising. This study aimed at discovering a new binder formula associated with the effect of binder composition i.e. bentonite, tapioca flour, and sago flour on the basis of its mechanical and physical properties. The new formula was expected to be a better binder in the production of sand moulds, resulting in high-quality casting products with minimal defects. Moreover, it is probable to be much more economical than bentonite. This research focused on testing the moulding sand composition with a number of different binders, i.e. bentonite, tapioca flour, and sago flour, each in a different proportion. The mixture of the moulding sand with each of the three binders will be tested in terms of its mechanical properties including compressive, shear, and tensile strength. Based on the test results, sago flour has the highest dry compressive strength of 28.6 N/cm2, whereas bentonite has the highest wet compressive strength, i.e. 11.83 N/cm2 and the highest wet shear strength i.e. 3.16 N/cm2. The binder with the highest dry shear strength is tapioca flour with 18.16 N/cm2. Regarding the tensile strength value, bentonite has the highest wet tensile strength of 0.85 N/cm2, while sago flour has the highest dry tensile strength of 1.73 N/cm2.
OPTIMUM CONDITIONS FOR EOR USING NANOFLUIDS SUBJECTED TO EM WAVES Kashif, Muhammad; Puspitasari, Poppy
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3836.507 KB) | DOI: 10.17977/um016v1i12017p015

Abstract

Today?s major challenge for oil industry is to improve the oil recovery from the reservoir. Various enhanced oil recovery (EOR) methods have been applied in the field and the steam injection is one of the most favourable methods. The deep reservoir will result in failure of this method due to excessive heat dissipation. In this situation, generating and injecting steam may be uneconomical due to the tremendous reduction of the recovery. Some methods using nanotechnology have been introduced and elaborated. However, we propose the electromagnetic (EM) method as an alternative due to its long range transmission of the transverse waves. These EM waves, coupled with some nanoparticles (NP), can modify the surface energy. We propose an optimum conditions based on some parameters namely, frequency, flux density, space charge density and skin depth, employing Maxwell and Helmholtz equations which interact with some magnetic and dielectric nanoparticles. A newly-designed EM antenna with a very high flux density is the model for this specific purpose. The electrical energy from the antenna transfers the waves to the dielectric and resistive nanoparticles, which is then transferred to the fluid with high capillary force. This results in lower surface tension which reduces the oil viscosity. In order to investigate the transport phenomena of the nanoparticles in porous medium, we applied Darcy?s law. Our preliminary study for scale model simulations showed that at a frequency of 0.125Hz, the electric field of the curve antenna with magnetic feeders was 4280% higher compared to the one without magnetic feeders,At a frequency of 0.125Hz, the magnetic field of the curve antenna with magnetic feeders was 3677% higher in comparison with the one without magnetic feeders. With the increasing frequency from 0.125Hz to 9Hz, the electric field and magnetic field of the antenna with feeders decreased by 99%. The permeability and porosity of glass beads packed column was 30.58mD and 25.87% respectively. It was observed that the cumulative recovery of oil reached 21.11% by using ZnO nanofluid with electromagnetic waves, 17.23% by using ZnO nanofluid without electromagnetic waves, 32.59% by using iron oxide nanofluid with electromagnetic waves, and 29.68% by using iron oxide nanofluid without electromagnetic waves. In summary, the use of ZnO and iron oxide nanoparticles as nanofluids with electromagnetic waves is considered the most effective to use in enhanced oil recovery.
UTILIZATION OF CARBON NANOTUBES IN ELECTROMAGNETIC WAVE DETECTORS Zakariah, Muhammad Hanis; Puspitasari, Poppy
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2555.511 KB) | DOI: 10.17977/um016v1i12017p038

Abstract

Direct detection of hydrocarbon by an active source using electromagnetic (EM) energy termed seabed logging (SBL) has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges include sensitivity and frequency matching. This paper presents development of the carbon nanotubes (CNTs) as electromagnetic wave detector due to outstanding properties of carbon nanotubes. They are currently one of the desired materials for advanced technologies. Two types of detectors were developed in this work, carbon nanotube-based (D1) and without nanotube-based (D2) detectors. Various configuration and arrangement for each type of detector were investigated to determine the one with the highest detection measurement and stability of frequency stability of detection system. It was found that 20 turn-coils coil placed at its centre gives the maximum detection of induction voltage, 39.61 mV. However, the 20 turn- coils with CNTs which gives 36.50 mV is the preferred EM detectors due to the stability in frequency of the detection system.
FORMULA OF MOULDING SAND, BENTONITE AND PORTLAND CEMENT TOIMPROVE THE QUALITY OF AL-SI CAST ALLOY Andoko, Andoko; Puspitasari, Poppy; Permanasari, Avita Ayu; Lubis, Didin Zakaria
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (572.596 KB) | DOI: 10.17977/um016v1i22017p049

Abstract

A binder is any material used to strengthen the bonding of moulding sand grains. The primary function of the binder is to hold the moulding sand and other materialstogether to produce high-quality casts. In this study, there were four binder compositions being tested, i.e. 5% bentonite + 5% Portland cement, 4% bentonite + 6% Portland cement, 6% bentonite + 4% Portland cement, and 7% bentonite + 3% Portland cement. Each specimen was measured for its compressive strength, shear strength, tensile strength and permeability. The highest compressive strength was obtained fromthe specimen composed of 6% bentonite+ 4% Portland cement. The highest shear strength was obtained from the moulding sand with 7% bentonite+ 3%Portland cement. The highest tensile strength was obtained fromthe specimen contained 5% bentonite+ 5% Portland cement. The specimen composed of 5% bentonite + 5% Portland cement had the lowest permeability of 131 ml/min, while that of 6% bentonite + 4% Portland cement had the highest permeability of 176 ml/min.
Effect of the Use of Metakaolin Artificial Lightweight Aggregate on the Properties of Structural Lightweight Concrete Risdanareni, Puput; Choiri, Afif Achsanul; Djatmika, Boedya; Puspitasari, Poppy
Civil Engineering Dimension Vol 19, No 2 (2017): SEPTEMBER 2017
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.241 KB) | DOI: 10.9744/ced.19.2.86-92

Abstract

This paper investigates the effect of using metakaolin Artificial Lightweight Aggre­gates (ALWA) as a substitute for coarse aggregates to produce structural lightweight concrete. A combination of 10M NaOH solution and sodium silicate solution was used as alkali activator. The ratio between the metakaolin binder and the alkali activator used in producing metakaolin ALWA is 48%:52%, by mass. It is shown that metakaolin ALWA has higher abrasion and water absorption, and lower bulk density values compared to normal aggregates. To determine the effect of using metakaolin ALWA as coarse aggregates in concrete, three variations of ALWA dosages were used, i.e. 0%, 50%, and 100% of the total coarse aggregates, by volume. The results show that the compressive strength of concrete decreased along with the increase of ALWA content in the mixture. However, concrete using 100% ALWA as coarse aggregates meets the requirements of compressive strength and density of structural light weight concrete.