cover
Contact Name
Heru Suryanto
Contact Email
jmest.journal@um.ac.id
Phone
+62341588528
Journal Mail Official
jmest.journal@um.ac.id
Editorial Address
3rd floor of H5 Bulding, Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang Jl. Semarang 5 Malang, Jawa Timur, 65145 Telp 0341-588528 / 0341-551312 ext 298
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Mechanical Engineering Science and Technology
ISSN : 25800817     EISSN : 25802402     DOI : 10.17977
Journal of Mechanical Engineering Science and Technology (JMEST) is a peer reviewed, open access journal that publishes original research articles and review articles in all areas of Mechanical Engineering and Basic Sciences
Articles 7 Documents
Search results for , issue "Vol 1, No 1 (2017)" : 7 Documents clear
ANALYSIS OF BIODEGRADATION OF BIOPLASTICS MADE OF CASSAVA STARCH Wahyuningtiyas, Nanang Eko; Suryanto, Heru
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7412.168 KB) | DOI: 10.17977/um016v1i12017p024

Abstract

Environmental pollution due to plastic waste taking too long to decompose has become a global problem. There have been numerous solutions proposed, one of which is the use of bioplastics. The use of cassava starch as the main ingredient in the manufacture of bioplastics shows great potential, since Indonesia has a diverse range of starch-producing plants. The aim of the present study is to analyse the effect of glycerol on microbial degradation. This experimental research investigated the use of cassava flour mixed with glycerol plasticizer at various concentrations (0, 2, 2.5, 3%) in the synthesis of bioplastics. The aspects studied were biodegradability, moisture absorption (using ASTM D570), shelf life, and morphological properties (using a camera equipped with a macro lens) and SEM. This study revealed that complete degradation could be achieved on the 9th day. The addition of a large concentration of glycerol would accelerate the microbial degradation process, increase moisture, and extend the shelf life of bioplastics in a dry place.
THE STRENGTH OF MOULDING SAND CONSISTING OF A MIXTURE OF BENTONITE, TAPIOCA FLOUR, AND SAGO FLOUR AS A NEW BINDER FORMULA TO IMPROVE THE QUALITY OF AL-SI CAST ALLOY Andoko, Andoko; Nurmalasari, Riana; Mizar, M. Alfian; Wulandari, Retno; Puspitasari, Poppy; Permanasari, Avita Ayu
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.133 KB) | DOI: 10.17977/um016v1i12017p032

Abstract

The major factors determining the quality of sand casting products are the base sand and the composition of the sand mould and the binding material. In the foundry industry, the most commonly used binder for creating sand moulds is bentonite. However, the price of bentonite is likely to keep rising. This study aimed at discovering a new binder formula associated with the effect of binder composition i.e. bentonite, tapioca flour, and sago flour on the basis of its mechanical and physical properties. The new formula was expected to be a better binder in the production of sand moulds, resulting in high-quality casting products with minimal defects. Moreover, it is probable to be much more economical than bentonite. This research focused on testing the moulding sand composition with a number of different binders, i.e. bentonite, tapioca flour, and sago flour, each in a different proportion. The mixture of the moulding sand with each of the three binders will be tested in terms of its mechanical properties including compressive, shear, and tensile strength. Based on the test results, sago flour has the highest dry compressive strength of 28.6 N/cm2, whereas bentonite has the highest wet compressive strength, i.e. 11.83 N/cm2 and the highest wet shear strength i.e. 3.16 N/cm2. The binder with the highest dry shear strength is tapioca flour with 18.16 N/cm2. Regarding the tensile strength value, bentonite has the highest wet tensile strength of 0.85 N/cm2, while sago flour has the highest dry tensile strength of 1.73 N/cm2.
ANALYSIS OF STRENGTH OF GLASS FIBRE COMPOSITE LEAF SPRING USING FINITE ELEMENT METHOD Andoko, Andoko; Puspitasari, Poppy; Permanasari, Avita Ayu
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2635.282 KB) | DOI: 10.17977/um016v1i12017p001

Abstract

Leaf spring, as one of the main components of the suspension system, serves the function of absorbing road shocks and any wheel vibrations, preventing them from being transmitted directly to the vehicle body. Moreover, it can increase the tire traction as well as support the weight of the vehicle and various kinds of external forces. Various studies on the use of composite materials for leaf springs have shown that the strength of composite leaf spring is similar to steel leaf spring with the same load carrying capacity. However, the composite leaf spring has the added advantage of being more lightweight. In fact, composite materials have been preferable for many purposes not only because of its properties but also its lightweight structure and cost effectiveness. The analysis process was carried out using the finite element method by means of ANSYS software to display the output of the analysis being performed. After the output is known, the amount of voltage in conventional, mounted, and progressive spring can be determined. Based on the data analysis, we concluded that conventional straight leaf springs produced a maximum voltage of 653.13 MPa and maximum deflection of 4367.1 mm. The results of the analysis using the finite element method showed that conventional leaf springs (both straight and not) are considered as the most effective model of leaf spring in terms of the power generated.
EFFECT OF MAGNETIC FIELD ON DIESEL ENGINE POWER FUELLED WITH JATROPHA-DIESEL OIL Sukarni, Sukarni; Partono, Partono; Krisdianto, Deni; Wulandari, Retno
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (300.498 KB) | DOI: 10.17977/um016v1i12017p044

Abstract

Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine?s power would be.
FACTORS AFFECTING THE SURFACE ROUGHNESS IN SINKING EDM PROCESS Fikri, Ahmad Atif; Romlie, Maftuchin; Aminnudin, Aminnudin
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.184 KB) | DOI: 10.17977/um016v1i12017p009

Abstract

The purpose of this study is to gain insights into the surface quality (smoothness) of sinking EDM machining products. Among other non- conventional machining processes, Electrical Discharge Machining (EDM) is the most commonly used process. EDM is a machining process that uses electric sparks created between a workpiece and a tool (electrode). As a manufacturing process, EDM is used for workpieces which have intricate contours and precise dimensions, and works by using electric discharges (sparks) applied in a rapid series of repetitive electrical discharges between the two electrodes, separated by a dielectric fluid, and subject to an electric voltage. Since the tool tends to wear easily and the mould material is very hard and tough, it is necessary to keep within appropriate EDM machining parameters, so that the smoothness of the mould lives up to expectations. Therefore, the parameters of sinking EDM process should be well established to produce the expected results, i.e. the smoothest surface quality and the maximum removal rate. Regarding the electrode materials used, conducting a further experiment is required to achieve the appropriate settings of pulse current, on-time, off-time, servo voltage, and gap width. This experimental study involved several factors: (a) electrode material, (b) magnitude of current, (c) on-time, and (d) quality of surface (smoothness). In this study, the gap between the electrode and the workpiece was controlled at a distance of 40 ?m, and with an off-time of 5 seconds, the same dielectric fluid, the same flow speed and the same dielectric immersion, and using the workpiece (AISI P20M steel). Quantitative approaches (t test, one-way, and ANOVA) were applied to analyse the results of comparison test and to determine the best parameter in sinking EDM process.
UTILIZATION OF CARBON NANOTUBES IN ELECTROMAGNETIC WAVE DETECTORS Zakariah, Muhammad Hanis; Puspitasari, Poppy
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2555.511 KB) | DOI: 10.17977/um016v1i12017p038

Abstract

Direct detection of hydrocarbon by an active source using electromagnetic (EM) energy termed seabed logging (SBL) has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges include sensitivity and frequency matching. This paper presents development of the carbon nanotubes (CNTs) as electromagnetic wave detector due to outstanding properties of carbon nanotubes. They are currently one of the desired materials for advanced technologies. Two types of detectors were developed in this work, carbon nanotube-based (D1) and without nanotube-based (D2) detectors. Various configuration and arrangement for each type of detector were investigated to determine the one with the highest detection measurement and stability of frequency stability of detection system. It was found that 20 turn-coils coil placed at its centre gives the maximum detection of induction voltage, 39.61 mV. However, the 20 turn- coils with CNTs which gives 36.50 mV is the preferred EM detectors due to the stability in frequency of the detection system.
OPTIMUM CONDITIONS FOR EOR USING NANOFLUIDS SUBJECTED TO EM WAVES Kashif, Muhammad; Puspitasari, Poppy
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3836.507 KB) | DOI: 10.17977/um016v1i12017p015

Abstract

Today?s major challenge for oil industry is to improve the oil recovery from the reservoir. Various enhanced oil recovery (EOR) methods have been applied in the field and the steam injection is one of the most favourable methods. The deep reservoir will result in failure of this method due to excessive heat dissipation. In this situation, generating and injecting steam may be uneconomical due to the tremendous reduction of the recovery. Some methods using nanotechnology have been introduced and elaborated. However, we propose the electromagnetic (EM) method as an alternative due to its long range transmission of the transverse waves. These EM waves, coupled with some nanoparticles (NP), can modify the surface energy. We propose an optimum conditions based on some parameters namely, frequency, flux density, space charge density and skin depth, employing Maxwell and Helmholtz equations which interact with some magnetic and dielectric nanoparticles. A newly-designed EM antenna with a very high flux density is the model for this specific purpose. The electrical energy from the antenna transfers the waves to the dielectric and resistive nanoparticles, which is then transferred to the fluid with high capillary force. This results in lower surface tension which reduces the oil viscosity. In order to investigate the transport phenomena of the nanoparticles in porous medium, we applied Darcy?s law. Our preliminary study for scale model simulations showed that at a frequency of 0.125Hz, the electric field of the curve antenna with magnetic feeders was 4280% higher compared to the one without magnetic feeders,At a frequency of 0.125Hz, the magnetic field of the curve antenna with magnetic feeders was 3677% higher in comparison with the one without magnetic feeders. With the increasing frequency from 0.125Hz to 9Hz, the electric field and magnetic field of the antenna with feeders decreased by 99%. The permeability and porosity of glass beads packed column was 30.58mD and 25.87% respectively. It was observed that the cumulative recovery of oil reached 21.11% by using ZnO nanofluid with electromagnetic waves, 17.23% by using ZnO nanofluid without electromagnetic waves, 32.59% by using iron oxide nanofluid with electromagnetic waves, and 29.68% by using iron oxide nanofluid without electromagnetic waves. In summary, the use of ZnO and iron oxide nanoparticles as nanofluids with electromagnetic waves is considered the most effective to use in enhanced oil recovery.

Page 1 of 1 | Total Record : 7